Development and validation of a nomogram for the prediction of brain metastases in small cell lung cancer

列线图 医学 肿瘤科 癌胚抗原 内科学 阶段(地层学) 逻辑回归 肺癌 癌症 生物 古生物学
作者
Weiwei Li,Can Ding,Sheng Wei,Qiang Wan,Zheng‐Guo Cui,Guiye Qi,Yi Liu
出处
期刊:Clinical Respiratory Journal [Wiley]
卷期号:17 (5): 456-467 被引量:8
标识
DOI:10.1111/crj.13615
摘要

The aim was to develop and validate a nomogram for the prediction of brain metastases (BM) in small cell lung cancer (SCLC), to explore the risk factors and assist clinical decision-making.We reviewed the clinical data of SCLC patients between 2015 and 2021. Patients between 2015 and 2019 were included to develop, whereas patients between 2020 and 2021 were used for external validation. Clinical indices were analysed by using the least absolute shrinkage and selection operator (LASSO) logistic regression analyses. The final nomogram was constructed and validated by bootstrap resampling.A total of 631 SCLC patients between 2015 and 2019 were included to construct model. Gender, T stage, N stage, Eastern Cooperative Oncology Group (ECOG), haemoglobin (HGB), the absolute value of lymphocyte (LYMPH #), platelet (PLT), retinol-binding protein (RBP), carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE) were identified as risk factors and included into the model. The C-indices were 0.830 and 0.788 in the internal validation by 1000 bootstrap resamples. The calibration plot revealed excellent agreement between the predicted and the actual probability. Decision curve analysis (DCA) showed better net benefits with a wider range of threshold probability (net clinical benefit was 1%-58%). The model was further externally validated in patients between 2020 and 2021 with a C-index of 0.818.We developed and validated a nomogram to predict the risk of BM in SCLC patients, which could help clinicians to rationally schedule follow-ups and promptly implement interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
三千发布了新的文献求助10
1秒前
溪风完成签到,获得积分10
1秒前
CipherSage应助wh采纳,获得10
1秒前
尤瑟夫发布了新的文献求助10
1秒前
大1完成签到,获得积分10
2秒前
惊竹发布了新的文献求助10
3秒前
全智贤发布了新的文献求助10
3秒前
十一完成签到,获得积分10
3秒前
彳亍的驴完成签到,获得积分10
3秒前
乐乐应助123采纳,获得10
4秒前
Z01发布了新的文献求助10
5秒前
曾梦发布了新的文献求助10
5秒前
山娃子完成签到,获得积分10
5秒前
彭于彦祖应助便宜小师傅采纳,获得200
5秒前
Niki发布了新的文献求助10
6秒前
6秒前
6秒前
怕黑冰安完成签到,获得积分10
7秒前
8秒前
丰知然应助XXF采纳,获得10
8秒前
爆米花应助缥缈的碧萱采纳,获得10
8秒前
Wendy完成签到,获得积分10
9秒前
元思远完成签到,获得积分10
10秒前
10秒前
Chara_kara发布了新的文献求助10
10秒前
风中的天空完成签到,获得积分10
11秒前
哈哈哈完成签到,获得积分10
11秒前
彳亍的驴发布了新的文献求助10
11秒前
freedom完成签到,获得积分10
12秒前
12秒前
青青完成签到,获得积分10
12秒前
方赫然应助天熙采纳,获得10
12秒前
香蕉觅云应助天熙采纳,获得10
12秒前
情怀应助天熙采纳,获得10
12秒前
科研通AI2S应助天熙采纳,获得10
12秒前
情怀应助H先生采纳,获得10
12秒前
Orange应助天熙采纳,获得10
12秒前
13秒前
曾梦完成签到,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300482
求助须知:如何正确求助?哪些是违规求助? 2935051
关于积分的说明 8471788
捐赠科研通 2608704
什么是DOI,文献DOI怎么找? 1424361
科研通“疑难数据库(出版商)”最低求助积分说明 662003
邀请新用户注册赠送积分活动 645653