A multi-objective calibration framework for capturing the behavioral patterns of autonomously-driven vehicles

巡航控制 加速度 计算机科学 校准 车头时距 任务(项目管理) 常量(计算机编程) 模拟 控制理论(社会学) 人工智能 控制(管理) 工程类 数学 物理 统计 经典力学 程序设计语言 系统工程
作者
Shi-Teng Zheng,Michail Makridis,Anastasios Kouvelas,Rui Jiang,Bin Jia
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:152: 104151-104151
标识
DOI:10.1016/j.trc.2023.104151
摘要

Calibration of car-following (CF) models is considered a very important task towards reproduction of individual vehicle behaviors and collective traffic phenomena. In most works, calibration is performed on trajectories of leading and following vehicles either on speed or spacing quantities, with the combination of the two plus the acceleration quantity to be considered as the most appropriate according to the literature. With the advent of adaptive cruise control (ACC) technology, there are intrinsic behavioral differences between human- and ACC-driven vehicles that are visible in experimental observations. Some examples include constant headway for ACC-enabled vehicles, string instability, hysteretic behavior, human-like response time and others. Since calibration is performed only on basic vehicle dynamics, i.e., the spacing, speed and acceleration, even after proper parametrization we cannot be certain that CF models will be able to reproduce some or all of the above phenomena and to what extend. The aim of this work is to propose a multi-objective calibration framework validated on empirical observations of car platoons. Furthermore, it investigates if, and to what extent, the traffic dynamics and behavioral patterns of ACC-driven vehicles can be reproduced. Two state-of-the-art CF models are tested with the empirical dataset. The results indicate that the proposed framework leads to acceptable errors and comparable performance, facilitating the models to capture phenomena in a way that is not possible until now, using the calibration on basic vehicle dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴实乐巧完成签到,获得积分10
2秒前
yujiayou完成签到,获得积分10
5秒前
Ava应助炸鸡加热采纳,获得10
8秒前
Ferry完成签到,获得积分10
8秒前
19秒前
菓小柒完成签到 ,获得积分10
21秒前
21秒前
阿航完成签到,获得积分10
21秒前
21秒前
Lyn发布了新的文献求助30
25秒前
炸鸡加热发布了新的文献求助10
25秒前
悟空发布了新的文献求助10
26秒前
Sissi完成签到 ,获得积分10
27秒前
ciiiv完成签到 ,获得积分10
29秒前
Soir完成签到 ,获得积分10
29秒前
29秒前
syt发布了新的文献求助10
33秒前
33秒前
儒雅的焦完成签到,获得积分10
34秒前
爱静静应助Zoom采纳,获得10
34秒前
奇异果完成签到 ,获得积分10
34秒前
34秒前
清爽尔安发布了新的文献求助10
35秒前
Jasper应助悟空采纳,获得10
36秒前
本人很懒没有名字完成签到 ,获得积分10
39秒前
Lyn完成签到,获得积分10
42秒前
Ohoooo完成签到,获得积分10
44秒前
清爽尔安完成签到,获得积分10
45秒前
香蕉觅云应助Ann采纳,获得10
46秒前
搜集达人应助祥梦伊飞采纳,获得30
46秒前
Owen应助单纯面包采纳,获得10
52秒前
Zoom完成签到,获得积分10
52秒前
QP34完成签到 ,获得积分10
53秒前
53秒前
彭于晏应助炸鸡加热采纳,获得10
54秒前
knn发布了新的文献求助10
54秒前
xianyu完成签到,获得积分10
57秒前
麦乐兴完成签到,获得积分10
58秒前
58秒前
59秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023