A multi-objective calibration framework for capturing the behavioral patterns of autonomously-driven vehicles

巡航控制 加速度 计算机科学 校准 车头时距 任务(项目管理) 常量(计算机编程) 模拟 控制理论(社会学) 人工智能 控制(管理) 工程类 数学 物理 统计 经典力学 程序设计语言 系统工程
作者
Shi-Teng Zheng,Michail Makridis,Anastasios Kouvelas,Rui Jiang,Bin Jia
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:152: 104151-104151
标识
DOI:10.1016/j.trc.2023.104151
摘要

Calibration of car-following (CF) models is considered a very important task towards reproduction of individual vehicle behaviors and collective traffic phenomena. In most works, calibration is performed on trajectories of leading and following vehicles either on speed or spacing quantities, with the combination of the two plus the acceleration quantity to be considered as the most appropriate according to the literature. With the advent of adaptive cruise control (ACC) technology, there are intrinsic behavioral differences between human- and ACC-driven vehicles that are visible in experimental observations. Some examples include constant headway for ACC-enabled vehicles, string instability, hysteretic behavior, human-like response time and others. Since calibration is performed only on basic vehicle dynamics, i.e., the spacing, speed and acceleration, even after proper parametrization we cannot be certain that CF models will be able to reproduce some or all of the above phenomena and to what extend. The aim of this work is to propose a multi-objective calibration framework validated on empirical observations of car platoons. Furthermore, it investigates if, and to what extent, the traffic dynamics and behavioral patterns of ACC-driven vehicles can be reproduced. Two state-of-the-art CF models are tested with the empirical dataset. The results indicate that the proposed framework leads to acceptable errors and comparable performance, facilitating the models to capture phenomena in a way that is not possible until now, using the calibration on basic vehicle dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助xiuxiu_27采纳,获得10
1秒前
iW完成签到 ,获得积分10
1秒前
2秒前
woommoow完成签到,获得积分10
2秒前
3秒前
3秒前
200303am发布了新的文献求助10
3秒前
3秒前
3秒前
开天神秀完成签到,获得积分10
4秒前
566完成签到,获得积分10
4秒前
jackysuen完成签到,获得积分10
4秒前
MARS完成签到,获得积分10
5秒前
HEIKU应助鲤鱼凛采纳,获得10
6秒前
自然的依丝完成签到,获得积分20
6秒前
step_stone完成签到,获得积分10
7秒前
愉快彩虹发布了新的文献求助10
7秒前
cdu完成签到,获得积分10
8秒前
星辰轨迹完成签到,获得积分10
8秒前
MARS发布了新的文献求助10
8秒前
Jenny应助哈尼妞妞122采纳,获得10
8秒前
岁月轮回发布了新的文献求助10
9秒前
MADKAI发布了新的文献求助10
9秒前
高文强完成签到,获得积分10
9秒前
9秒前
习习应助坚定的诗双采纳,获得10
9秒前
9秒前
er完成签到,获得积分20
10秒前
科研通AI2S应助夯大力采纳,获得10
10秒前
10秒前
10秒前
Hover发布了新的文献求助10
10秒前
852应助无情的白桃采纳,获得10
11秒前
飘逸问薇完成签到 ,获得积分10
12秒前
SYLH应助机智的白猫采纳,获得10
13秒前
大模型应助笑点低蜜蜂采纳,获得10
13秒前
13秒前
CodeCraft应助RRRIGO采纳,获得10
13秒前
凯凯完成签到 ,获得积分10
13秒前
萌萌发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759