Optimal allocation method of multi-energy system based on hybrid optimization algorithm

粒子群优化 计算机科学 数学优化 多群优化 帝国主义竞争算法 最优化问题 计算 可再生能源 元优化 能量(信号处理) 算法 工程类 数学 统计 电气工程
作者
Ji Li,Wei Xu,Xiaomei Feng,Biao Qiao,Lü Xing,Chao Liu,Huiyu Xue
出处
期刊:Energy Reports [Elsevier]
卷期号:9: 1415-1423 被引量:1
标识
DOI:10.1016/j.egyr.2023.04.244
摘要

With the rapid development of industry, the research of energy storage technology and renewable energy continues to be hot, and the energy industry opens the era of diversification. Multi-energy complementary has become a new trend in sustainable energy development, leading the energy industry to a new energy system of deep integration and integration of multiple energy sources. This paper proposes a hybrid optimization algorithm that combines particle swarm algorithms and Hooke–Jeeves​ (HJ) with a comprehensive evaluation index as the optimization objective, aiming to improve the speed of solving the capacity optimization of integrated energy systems. The multi-energy system configuration optimization platform that covers the index system, optimization model, and system analysis module was established to systematically solve the integrated energy system optimization configuration problem, moreover provide an important reference for integrated energy system design and implementation. Besides, the influence of optimization algorithms on the configuration results was analyzed. Taking the combination of soil source heat pump system and combined cooling, heating and power system as an example, this study quantifies and compares the optimization results and solution speeds of the hybrid algorithm and the traditional single optimization calculation. It is shown that the hybrid optimization algorithm reduces the amount of iteration steps by approximately 31% compared with the particle swarm algorithm and by approximately 48% compared with the HJ algorithm. This significantly improves the speed of the optimization computation while ensuring the accuracy of the computation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助fuzhy采纳,获得10
刚刚
xin关闭了xin文献求助
1秒前
平淡化蛹完成签到 ,获得积分10
2秒前
NexusExplorer应助秦文静采纳,获得30
2秒前
iconcrete完成签到,获得积分0
2秒前
含蓄的明雪应助科学家采纳,获得10
3秒前
3秒前
pzh完成签到 ,获得积分10
4秒前
shelly发布了新的文献求助10
5秒前
没所谓发布了新的文献求助10
5秒前
xrang完成签到 ,获得积分10
6秒前
平淡化蛹关注了科研通微信公众号
6秒前
7秒前
ZSL完成签到,获得积分20
9秒前
9秒前
12秒前
fuzhy发布了新的文献求助10
12秒前
14秒前
大模型应助科研通管家采纳,获得10
14秒前
InfoNinja应助科研通管家采纳,获得30
14秒前
InfoNinja应助科研通管家采纳,获得30
15秒前
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
幸福果汁完成签到,获得积分10
16秒前
17秒前
Boyle发布了新的文献求助10
19秒前
fuzhy完成签到,获得积分10
20秒前
秦文静发布了新的文献求助30
21秒前
暗袍发布了新的文献求助10
24秒前
25秒前
jmchen完成签到,获得积分10
25秒前
26秒前
激流勇进wb完成签到 ,获得积分10
26秒前
晨gegeai发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155850
求助须知:如何正确求助?哪些是违规求助? 2807060
关于积分的说明 7871807
捐赠科研通 2465463
什么是DOI,文献DOI怎么找? 1312240
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905