Detail-Injection-Model-Inspired Deep Fusion Network for Pansharpening

计算机科学 全色胶片 人工智能 可解释性 多光谱图像 卷积神经网络 深度学习 图像分辨率 网络体系结构 图像融合 模式识别(心理学) 图像(数学) 计算机安全
作者
Zhikang Xiang,Liang Xiao,Jingxiang Yang,Wenzhi Liao,Wilfried Philips
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2022.3197438
摘要

Pansharpening is an image fusion procedure, which aims to produce a high spatial resolution multispectral image by combining a low spatial resolution multispectral image and a high spatial resolution panchromatic image. The most popular and successful paradigm for pansharpening is the framework known as detail injection, while it cannot fully exploit complex and non-linear complementary features of both images. In this paper, we propose a detail injection model inspired deep fusion network for pansharpening (DIM-FuNet). Firstly, by treating pansharpening as a complicated and non-linear details learning and injection problem, we establish a unified optimizing detail-injection model with triple detail fidelity terms: 1) a band-dependent spatial detail fidelity term, 2) a local detail fidelity term and 3) a complicated details synthesis term. Secondly, the model is optimized via the iterative gradient descent and unfolded into a deep convolutional neural network. Subsequently, the unrolling network has triple branches, in which, a point-wise convolutional sub-network, a depth-wise convolutional sub-network are corresponding to the former two detail constrained terms, and an adaptive weighted reconstruction module with a fusion sub-network to aggregate details of two branches and synthesis the final complicated details. Finally, the deep unrolling network is trained in end-to-end manners. Different from traditional deep fusion networks, the architecture design of DIM-FuNet is guided by the optimizing model and thus promotes better interpretability. Experimental results on reduced and full-resolution demonstrate the effectiveness of the proposed DIM-FuNet which achieves the best performance compared with the state-of-the-art pansharpening method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝刺完成签到,获得积分20
刚刚
1秒前
1秒前
Michael_li发布了新的文献求助10
1秒前
乐多完成签到,获得积分10
1秒前
英姑应助田...采纳,获得10
2秒前
书双完成签到,获得积分10
2秒前
Dfish完成签到,获得积分10
4秒前
T Tom发布了新的文献求助10
4秒前
sdl发布了新的文献求助10
4秒前
5秒前
wxZeng完成签到,获得积分10
6秒前
6秒前
echo完成签到 ,获得积分10
7秒前
务实的胡萝卜完成签到 ,获得积分10
7秒前
Xiaoxiao应助蓝刺采纳,获得10
7秒前
8秒前
DrLuffy完成签到 ,获得积分10
8秒前
8秒前
美好蜻蜓完成签到 ,获得积分10
9秒前
Pipper完成签到,获得积分10
9秒前
RLL完成签到,获得积分10
9秒前
所所应助T Tom采纳,获得10
10秒前
叶子完成签到,获得积分10
10秒前
lili完成签到 ,获得积分10
11秒前
ooo发布了新的文献求助10
12秒前
mr_beard完成签到 ,获得积分10
12秒前
隐形的紫菜完成签到,获得积分10
12秒前
rita完成签到,获得积分10
13秒前
奇拉维特完成签到 ,获得积分10
13秒前
14秒前
zz完成签到,获得积分10
14秒前
佟碧玉完成签到,获得积分20
14秒前
14秒前
YouziBa发布了新的文献求助10
14秒前
Jimmybythebay完成签到,获得积分10
14秒前
NiKkKoO完成签到 ,获得积分10
15秒前
海藻酸完成签到,获得积分10
15秒前
Michael_li完成签到,获得积分10
15秒前
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770633
求助须知:如何正确求助?哪些是违规求助? 3315553
关于积分的说明 10177037
捐赠科研通 3030703
什么是DOI,文献DOI怎么找? 1663063
邀请新用户注册赠送积分活动 795273
科研通“疑难数据库(出版商)”最低求助积分说明 756705