血小板
内皮功能障碍
内皮干细胞
血小板活化
医学
单核细胞
内皮
免疫学
内皮细胞活化
内科学
作者
Manli Guo,Shunyang Fan,Qian Chen,Cuiping Jia,Miaoyun Qiu,Yun Bu,Wai Ho Tang,Yuan Zhang
标识
DOI:10.3389/fimmu.2022.922868
摘要
Background Kawasaki disease (KD) is an acute vasculitis that may result in permanent coronary artery damage with unknown etiology. Endothelial cell (EC) dysfunction and platelet hyperactivity are the hallmarks of KD. Platelets are involved in the development of endothelial dysfunction. MiR-223 transferred by platelet microparticles (PMPs) has been found to involve in the functional regulation of endothelial cells in sepsis. However, the role of platelet-derived miR-223 in endothelial dysfunction has not yet been investigated in KD. Objectives We seek to investigate the role of platelet-derived miR-223 in endothelial dysfunction of KD vasculopathy. Methods and results Forty-five acute KD patients and 45 matched controls were randomly recruited in the study. When co-cultured with human coronary artery endothelial cells (HCAECs), KD platelets with higher levels of miR-223 were incorporated into HCAECs, resulting in the horizontal transfer of miR-223. Using KD platelets, PMPs, and platelet-releasate from the same amount of blood co-cultured with HCAECs, we found the increased expression of miR-223 in HCAECs was primarily derived from KD platelets, rather than PMPs or free miRNAs from platelet- releasate. KD platelet-derived miR-223 attenuated TNF-α induced intercellular cell adhesion molecule-1 (ICAM-1) expression in HCAECs. KD platelet-derived miR-223 also suppressed the monocyte adhesion to HCAECs. In vivo , platelet-specific miR-223 knockout (PF4-cre: miR-223 flox/flox ) C57BL/6 mice and miR-223 flox/flox C57BL/6 mice were used. Using Lactobacillus casei cell wall extract (LCWE) to establish KD murine model, we showed that in LCWE-injected PF4-cre: miR-223 flox/flox mice, deficiency of platelet-miR-223 exacerbates the medial thickening of the abdominal aorta, increased ICAM-1 expression with concomitant CD45 + inflammatory cells infiltration into the endothelium compared to LCWE-injected miR-223 flox/flox mice. Conclusions The horizontal transfer of platelet-derived miR-223 suppresses the expression of ICAM-1 in HCAECs, which at least in part attenuates leukocyte adhesion, thereby reducing endothelial damage in KD vasculitis
科研通智能强力驱动
Strongly Powered by AbleSci AI