Boosting Algorithm to Handle Unbalanced Classification of PM2.5 Concentration Levels by Observing Meteorological Parameters in Jakarta-Indonesia Using AdaBoost, XGBoost, CatBoost, and LightGBM

Boosting(机器学习) 阿达布思 计算机科学 统计分类 人工智能 模式识别(心理学) 算法 机器学习 数据挖掘 支持向量机
作者
Toni Toharudin,Rezzy Eko Caraka,Indah Reski Pratiwi,Yunho Kim,Prana Ugiana Gio,Anjar Dimara Sakti,Maengseok Noh,Farid Azhar Lutfi Nugraha,Resa Septiani Pontoh,Tafia Hasna Putri,Thalita Safa Azzahra,Jessica Jesslyn Cerelia,Gumgum Darmawan,Bens Pardamean
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 35680-35696 被引量:12
标识
DOI:10.1109/access.2023.3265019
摘要

Air quality conditions are now more severe in the Jakarta area that is among the world's top eight worst cities according to the 2022 Air Quality Index (AQI) report. In particular, the data from the Meteorological, Climatological, and Geophysical Agency (BMKG) of the Republic of Indonesia, the latest outcomes in air quality conditions in Jakarta and surrounding areas, says that PM2.5 concentrations have increased and peaked at 148μ g/m3 in 2022. While a classification system for this pollution is necessary and critical, the observation of PM2.5 concentrations measured through the BMKG Kemayoran station, Jakarta, turns out to be identified as an unbalanced data class. Thus, in this work, we perform boosting algorithm supervised learning to handle such an unbalanced classification toward PM2.5 concentration levels by observing meteorological patterns in Jakarta during 1 January 2015 to 7 July 2022. The boosting algorithms considered in this research include Adaptive Boosting (AdaBoost), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM). Our simulations have proven that boosting classification can significantly reduce bias in combination with variance reduction with unbalanced within-class coefficients, with the classification of PM2.5 class values: good 62%, moderate 34%, and unhealthy 59%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助矮小的猕猴桃采纳,获得10
1秒前
今后应助兜兜采纳,获得10
2秒前
孤独念柏完成签到,获得积分10
2秒前
SYLH应助球球了采纳,获得10
6秒前
Wanderer完成签到 ,获得积分10
7秒前
7秒前
9秒前
10秒前
xinl518发布了新的文献求助10
11秒前
11秒前
海阔云高完成签到,获得积分10
11秒前
14秒前
14秒前
青青完成签到,获得积分10
16秒前
霍华淞发布了新的文献求助10
16秒前
周末万岁发布了新的文献求助10
17秒前
xinl518完成签到,获得积分10
17秒前
19秒前
huhuhuuh发布了新的文献求助10
21秒前
Chenly完成签到,获得积分10
21秒前
CCC发布了新的文献求助10
22秒前
予陆与你完成签到,获得积分10
23秒前
汉堡包应助霍华淞采纳,获得10
23秒前
斯文火龙果完成签到,获得积分10
26秒前
予陆与你发布了新的文献求助10
26秒前
28秒前
霍华淞完成签到,获得积分10
29秒前
CCC完成签到,获得积分10
29秒前
huhuhuuh完成签到,获得积分10
31秒前
肖宇婕完成签到,获得积分10
32秒前
johnny完成签到,获得积分10
32秒前
34秒前
小二郎应助Chang采纳,获得10
34秒前
yusong发布了新的文献求助10
35秒前
水菜泽子发布了新的文献求助10
37秒前
38秒前
当时明月在完成签到,获得积分0
38秒前
38秒前
小二郎应助半凡采纳,获得10
40秒前
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030