Boosting Algorithm to Handle Unbalanced Classification of PM2.5 Concentration Levels by Observing Meteorological Parameters in Jakarta-Indonesia Using AdaBoost, XGBoost, CatBoost, and LightGBM

Boosting(机器学习) 阿达布思 计算机科学 统计分类 人工智能 模式识别(心理学) 算法 机器学习 数据挖掘 支持向量机
作者
Toni Toharudin,Rezzy Eko Caraka,Indah Reski Pratiwi,Yunho Kim,Prana Ugiana Gio,Anjar Dimara Sakti,Maengseok Noh,Farid Azhar Lutfi Nugraha,Resa Septiani Pontoh,Tafia Hasna Putri,Thalita Safa Azzahra,Jessica Jesslyn Cerelia,Gumgum Darmawan,Bens Pardamean
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 35680-35696 被引量:12
标识
DOI:10.1109/access.2023.3265019
摘要

Air quality conditions are now more severe in the Jakarta area that is among the world's top eight worst cities according to the 2022 Air Quality Index (AQI) report. In particular, the data from the Meteorological, Climatological, and Geophysical Agency (BMKG) of the Republic of Indonesia, the latest outcomes in air quality conditions in Jakarta and surrounding areas, says that PM2.5 concentrations have increased and peaked at 148μ g/m3 in 2022. While a classification system for this pollution is necessary and critical, the observation of PM2.5 concentrations measured through the BMKG Kemayoran station, Jakarta, turns out to be identified as an unbalanced data class. Thus, in this work, we perform boosting algorithm supervised learning to handle such an unbalanced classification toward PM2.5 concentration levels by observing meteorological patterns in Jakarta during 1 January 2015 to 7 July 2022. The boosting algorithms considered in this research include Adaptive Boosting (AdaBoost), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM). Our simulations have proven that boosting classification can significantly reduce bias in combination with variance reduction with unbalanced within-class coefficients, with the classification of PM2.5 class values: good 62%, moderate 34%, and unhealthy 59%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助醉在肩上采纳,获得10
1秒前
直率的钢铁侠完成签到,获得积分10
1秒前
善学以致用应助12334采纳,获得10
1秒前
道心完成签到,获得积分10
1秒前
xiaojiu完成签到,获得积分10
2秒前
劣根完成签到,获得积分10
2秒前
科研小秦发布了新的文献求助10
2秒前
欢呼芒果完成签到,获得积分10
2秒前
3秒前
Jun完成签到 ,获得积分10
3秒前
3秒前
wyq完成签到,获得积分10
6秒前
千流完成签到,获得积分10
6秒前
terrell完成签到,获得积分10
6秒前
7秒前
dique3hao完成签到 ,获得积分10
7秒前
蓝韵完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
宋艳芳完成签到,获得积分10
8秒前
醉翁完成签到,获得积分10
8秒前
Ericlibrave完成签到 ,获得积分10
8秒前
熬夜波比应助AoAoo采纳,获得10
9秒前
gugujk应助紧张的绿茶采纳,获得10
9秒前
gugujk应助紧张的绿茶采纳,获得10
9秒前
yijijue完成签到,获得积分10
9秒前
英俊的铭应助风中外绣采纳,获得10
10秒前
caulif完成签到 ,获得积分10
10秒前
Zing发布了新的文献求助10
10秒前
向日葵完成签到,获得积分10
11秒前
p454q完成签到 ,获得积分10
11秒前
Liar完成签到,获得积分10
11秒前
73Jennie123完成签到,获得积分10
11秒前
SCINEXUS完成签到,获得积分0
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664939
求助须知:如何正确求助?哪些是违规求助? 4873377
关于积分的说明 15110105
捐赠科研通 4823973
什么是DOI,文献DOI怎么找? 2582614
邀请新用户注册赠送积分活动 1536518
关于科研通互助平台的介绍 1495130