Boosting Algorithm to Handle Unbalanced Classification of PM2.5 Concentration Levels by Observing Meteorological Parameters in Jakarta-Indonesia Using AdaBoost, XGBoost, CatBoost, and LightGBM

Boosting(机器学习) 阿达布思 计算机科学 统计分类 人工智能 模式识别(心理学) 算法 机器学习 数据挖掘 支持向量机
作者
Toni Toharudin,Rezzy Eko Caraka,Indah Reski Pratiwi,Yunho Kim,Prana Ugiana Gio,Anjar Dimara Sakti,Maengseok Noh,Farid Azhar Lutfi Nugraha,Resa Septiani Pontoh,Tafia Hasna Putri,Thalita Safa Azzahra,Jessica Jesslyn Cerelia,Gumgum Darmawan,Bens Pardamean
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 35680-35696 被引量:12
标识
DOI:10.1109/access.2023.3265019
摘要

Air quality conditions are now more severe in the Jakarta area that is among the world's top eight worst cities according to the 2022 Air Quality Index (AQI) report. In particular, the data from the Meteorological, Climatological, and Geophysical Agency (BMKG) of the Republic of Indonesia, the latest outcomes in air quality conditions in Jakarta and surrounding areas, says that PM2.5 concentrations have increased and peaked at 148μ g/m3 in 2022. While a classification system for this pollution is necessary and critical, the observation of PM2.5 concentrations measured through the BMKG Kemayoran station, Jakarta, turns out to be identified as an unbalanced data class. Thus, in this work, we perform boosting algorithm supervised learning to handle such an unbalanced classification toward PM2.5 concentration levels by observing meteorological patterns in Jakarta during 1 January 2015 to 7 July 2022. The boosting algorithms considered in this research include Adaptive Boosting (AdaBoost), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM). Our simulations have proven that boosting classification can significantly reduce bias in combination with variance reduction with unbalanced within-class coefficients, with the classification of PM2.5 class values: good 62%, moderate 34%, and unhealthy 59%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助潦草采纳,获得10
刚刚
1秒前
1秒前
1秒前
柒八染完成签到,获得积分10
1秒前
wsljc134完成签到,获得积分20
1秒前
2秒前
善良香岚完成签到,获得积分20
2秒前
2秒前
2秒前
123发布了新的文献求助10
2秒前
2秒前
不安太阳完成签到,获得积分10
3秒前
t_suo完成签到,获得积分10
3秒前
bioinforiver完成签到,获得积分10
3秒前
乐观跳跳糖完成签到,获得积分10
3秒前
3秒前
WxChen发布了新的文献求助10
4秒前
4秒前
酷炫的香魔完成签到,获得积分10
4秒前
4秒前
4秒前
NexusExplorer应助无奈满天采纳,获得10
4秒前
qwt_hello完成签到,获得积分10
4秒前
4秒前
海涛完成签到,获得积分10
5秒前
星星发布了新的文献求助10
6秒前
qq完成签到,获得积分10
6秒前
6秒前
6秒前
中央戏精学院完成签到,获得积分10
6秒前
寒冷依秋完成签到,获得积分10
6秒前
彭于晏应助jogrgr采纳,获得10
6秒前
思源应助momo采纳,获得10
7秒前
guozi应助yi采纳,获得10
7秒前
科研通AI2S应助鲤鱼凛采纳,获得10
7秒前
7秒前
kumarr发布了新的文献求助10
7秒前
7秒前
时尚语梦发布了新的文献求助10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759