A Delay-Optimal Task Scheduling Strategy for Vehicle Edge Computing Based on the Multi-Agent Deep Reinforcement Learning Approach

强化学习 计算机科学 云朵 计算 调度(生产过程) 分布式计算 线程(计算) 边缘计算 计算卸载 人工智能 GSM演进的增强数据速率 云计算 算法 数学优化 数学 操作系统
作者
Xuefang Nie,Yunhui Yan,Tianqing Zhou,Xingbang Chen,Zhang Dingding
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (7): 1655-1655 被引量:3
标识
DOI:10.3390/electronics12071655
摘要

Cloudlet-based vehicular networks are a promising paradigm to enhance computation services through a distributed computation method, where the vehicle edge computing (VEC) cloudlet are deployed in the vicinity of the vehicle. In order to further improve the computing efficiency and reduce the task processing delay, we present a parallel task scheduling strategy based on the multi-agent deep reinforcement learning (DRL) approach for delay-optimal VEC in vehicular networks, where multiple computation tasks select the target threads in a VEC server to execute the computing tasks. We model the target thread decision of computation tasks as a multi-agent reinforcement learning problem, which is further solved by using a task scheduling algorithm based on multi-agent DRL that is implemented in a distributed manner. The computation tasks, with each selection acting on the target thread acting as an agent, collectively interact with the VEC environment and receive observations with respect to a common reward and learn to reduce the task processing delay by updating the multi-agent deep Q network (MADQN) using the obtained experiences. The experimental results show that the proposed DRL-based scheduling algorithm can achieve significant performance improvement, reducing the task processing delay by 40% and increasing the processing probability of success for computation tasks by more than 30% compared with the traditional task scheduling algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋秋发布了新的文献求助10
1秒前
1秒前
Ava应助学术不难采纳,获得30
2秒前
李爱国应助情殇采纳,获得10
3秒前
3秒前
5秒前
白瑾完成签到 ,获得积分10
6秒前
Alina1874发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
小肆发布了新的文献求助10
10秒前
11秒前
初心不变发布了新的文献求助10
11秒前
情殇发布了新的文献求助10
14秒前
Maple发布了新的文献求助10
15秒前
16秒前
路茉完成签到,获得积分10
17秒前
文静的麦片完成签到,获得积分10
17秒前
19秒前
21秒前
路茉发布了新的文献求助10
22秒前
初心不变完成签到,获得积分20
22秒前
Xieyusen发布了新的文献求助10
23秒前
25秒前
福娃哇完成签到 ,获得积分10
26秒前
Owen应助猪猪hero采纳,获得10
27秒前
热心市民小红花应助wg言采纳,获得10
28秒前
深情安青应助飞飞采纳,获得10
28秒前
桐桐应助llll采纳,获得10
30秒前
30秒前
vina发布了新的文献求助30
30秒前
wu8577应助Lisisi采纳,获得30
31秒前
31秒前
可爱的函函应助俏皮诺言采纳,获得10
33秒前
半个桃子完成签到,获得积分20
33秒前
35秒前
35秒前
顺心磬完成签到 ,获得积分10
37秒前
38秒前
半个桃子发布了新的文献求助30
38秒前
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824