A Multi-classification Division-aggregation Framework for Fake News Detection

计算机科学 师(数学) 算术 数学
作者
Wen Zhang,Haitao Fu,Huan Wang,Zhiguo Gong,Pan Zhou,Di Wang
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tbdata.2024.3378098
摘要

Nowadays, as human activities are shifting to social media, fake news detection has been a crucial problem. Existing methods ignore the classification difference in online news and cannot take full advantage of multi-classification knowledges. For example, when coping with a post "A mouse is frightened by a cat," a model that learns "computer" knowledge tends to misunderstand "mouse" and give a fake label, but a model that learns "animal" knowledge tends to give a true label. Therefore, this research proposes a multi-classification division-aggregation framework to detect fake news, named CKA , which innovatively learns classification knowledges during training stages and aggregates them during prediction stages. It consists of three main components: a news characterizer, an ensemble coordinator, and a truth predictor. The news characterizer is responsible for extracting news features and obtaining news classifications. Cooperating with the news characterizer, the ensemble coordinator generates classification-specifical models for the maximum reservation of classification knowledges during the training stage, where each classification-specifical model maximizes the detection performance of fake news on corresponding news classifications. Further, to aggregate the classification knowledges during the prediction stage, the truth predictor uses the truth discovery technology to aggregate the predictions from different classification-specifical models based on reliability evaluation of classification-specifical models. Extensive experiments prove that our proposed CKA outperforms state-of-the-art baselines in fake news detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddddddd完成签到 ,获得积分10
4秒前
爱静静应助uu采纳,获得10
6秒前
6秒前
effie发布了新的文献求助10
9秒前
华仔应助adeno采纳,获得10
11秒前
ZSZ完成签到,获得积分10
11秒前
12秒前
zengyiyong完成签到,获得积分10
12秒前
眯眯眼的代容完成签到,获得积分10
13秒前
FashionBoy应助落后醉易采纳,获得10
13秒前
Hum0ro98完成签到,获得积分10
18秒前
yolo发布了新的文献求助10
19秒前
20秒前
林一木完成签到,获得积分10
20秒前
犹豫寒云完成签到,获得积分10
21秒前
23秒前
kirisaki完成签到 ,获得积分10
24秒前
25秒前
monica发布了新的文献求助30
27秒前
知性的以筠完成签到,获得积分10
28秒前
落后醉易发布了新的文献求助10
28秒前
28秒前
乐乐乐乐乐乐应助fairy采纳,获得10
29秒前
万泉部诗人完成签到,获得积分10
31秒前
善学以致用应助赵雪萌采纳,获得10
33秒前
落后醉易完成签到,获得积分20
34秒前
秋子骞完成签到 ,获得积分10
35秒前
Eason发布了新的文献求助10
37秒前
Orange应助勤能补拙采纳,获得10
37秒前
42秒前
蒋灵馨完成签到 ,获得积分10
42秒前
赵雪萌完成签到,获得积分10
43秒前
可爱的函函应助uu采纳,获得10
44秒前
45秒前
49秒前
梅子黄时雨完成签到,获得积分10
49秒前
乐乐应助ALTNT采纳,获得10
49秒前
安白完成签到,获得积分10
49秒前
勤能补拙发布了新的文献求助10
52秒前
level发布了新的文献求助10
53秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342393
求助须知:如何正确求助?哪些是违规求助? 2969597
关于积分的说明 8640369
捐赠科研通 2649564
什么是DOI,文献DOI怎么找? 1450766
科研通“疑难数据库(出版商)”最低求助积分说明 671975
邀请新用户注册赠送积分活动 661204