电池(电)
汽车工程
电动汽车
电动汽车
计算机科学
汽车蓄电池
电气工程
嵌入式系统
工程类
功率(物理)
物理
量子力学
作者
Ahmed M. Elbeshbeshy,Omar Matar,Ahmed Shawky,Amr Alaaeldin,Hisam S. Faiod,Mennatallah A. Gomaa,Habiba A. Ahmed,Arwa G. Shaheen,Sahar S. Kaddah,Basem M. Badr
标识
DOI:10.1109/mepcon58725.2023.10462347
摘要
The increasing concern for environmental sustainability and the necessity to mitigate greenhouse gas emissions have resulted in a growing demand for different transportation options. Among these options, electric motorcycles (E-Motorcycles) have emerged as a promising solution to tackle the challenges presented by conventional fossil-fueled vehicles. In this paper, the design and development of an inexpensive battery system for E-Motorcycles is discussed. A comprehensive literature review is conducted to explore various battery and battery management systems (BMS) utilized in electric mobility systems. The advantages and disadvantages of different systems are emphasized, providing valuable insights into the proposed battery system. A battery tester circuit is designed and developed to measure the capacity of multiple battery cells simultaneously. Efficient charging (based on constant current and voltage technique) and discharging are guaranteed through the implementation of passive cell balancing, which equalizes the voltage of each cell in the battery pack. Different methods of state of charge (SoC) estimation are designed and analyzed. Simulation work validates the performance of the battery tester circuit and the BMS, where the performance of the battery system is evaluated through experimental tests. The experimental results align with the simulation results, affirming the effectiveness of the designed battery system. The developed battery pack composes of 65 lithium-ion battery cells arranged into 13 modules, to provide 48V, 350Wh, 30ARated for the drivetrain system.
科研通智能强力驱动
Strongly Powered by AbleSci AI