可视化
计算机科学
计算生物学
数据可视化
生物
数据挖掘
作者
Yanjun Li,Chaoyue Sun,Daria Y. Romanova,Dapeng Wu,Ruogu Fang,Leonid L. Moroz
出处
期刊:Methods in molecular biology
日期:2024-01-01
卷期号:: 383-445
标识
DOI:10.1007/978-1-0716-3642-8_17
摘要
The emergence and development of single-cell RNA sequencing (scRNA-seq) techniques enable researchers to perform large-scale analysis of the transcriptomic profiling at cell-specific resolution. Unsupervised clustering of scRNA-seq data is central for most studies, which is essential to identify novel cell types and their gene expression logics. Although an increasing number of algorithms and tools are available for scRNA-seq analysis, a practical guide for users to navigate the landscape remains underrepresented. This chapter presents an overview of the scRNA-seq data analysis pipeline, quality control, batch effect correction, data standardization, cell clustering and visualization, cluster correlation analysis, and marker gene identification. Taking the two broadly used analysis packages, i.e., Scanpy and MetaCell, as examples, we provide a hands-on guideline and comparison regarding the best practices for the above essential analysis steps and data visualization. Additionally, we compare both packages and algorithms using a scRNA-seq dataset of the ctenophore Mnemiopsis leidyi, which is representative of one of the earliest animal lineages, critical to understanding the origin and evolution of animal novelties. This pipeline can also be helpful for analyses of other taxa, especially prebilaterian animals, where these tools are under development (e.g., placozoan and Porifera).
科研通智能强力驱动
Strongly Powered by AbleSci AI