Strong, Tough, and Biocompatible Poly(vinyl alcohol)–Poly(vinylpyrrolidone) Multiscale Network Hydrogels Reinforced by Aramid Nanofibers

自愈水凝胶 乙烯醇 材料科学 纳米纤维 生物相容性 极限抗拉强度 复合材料 韧性 化学工程 纳米技术 聚合物 高分子化学 工程类 冶金
作者
Dongchao Ji,Zhibo Zhang,Jingxuan Sun,Wenxin Cao,Zhuochao Wang,Xiaolei Wang,Tengyue Cao,Jiecai Han,Jiaqi Zhu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (19): 25304-25316 被引量:4
标识
DOI:10.1021/acsami.4c02354
摘要

Poly(vinyl alcohol) (PVA) hydrogels are water-rich, three-dimensional (3D) network materials that are similar to the tissue structure of living organisms. This feature gives hydrogels a wide range of potential applications, including drug delivery systems, articular cartilage regeneration, and tissue engineering. Due to the large amount of water contained in hydrogels, achieving hydrogels with comprehensive properties remains a major challenge, especially for isotropic hydrogels. This study innovatively prepares a multiscale-reinforced PVA hydrogel from molecular-level coupling to nanoscale enhancement by chemically cross-linking poly(vinylpyrrolidone) (PVP) and in situ assembled aromatic polyamide nanofibers (ANFs). The optimized ANFs–PVA–PVP (APP) hydrogels have a tensile strength of ≈9.7 MPa, an elongation at break of ≈585%, a toughness of ≈31.84 MJ/m3, a compressive strength of ≈10.6 MPa, and a high-water content of ≈80%. It is excellent among all reported PVA hydrogels and even comparable to some anisotropic hydrogels. System characterizations show that those performances are attributed to the particular multiscale load-bearing structure and multiple interactions between ANFs and PVA. Moreover, APP hydrogels exhibit excellent biocompatibility and a low friction coefficient (≈0.4). These valuable performances pave the way for broad potential in many advanced applications such as biological tissue replacement, flexible wearable devices, electronic skin, and in vivo sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ljw完成签到,获得积分20
2秒前
3秒前
3秒前
4秒前
alexyang完成签到,获得积分10
4秒前
berg发布了新的文献求助10
5秒前
是个小朋友啊应助小柒采纳,获得10
5秒前
8秒前
whuhustwit发布了新的文献求助10
9秒前
12秒前
部落格123发布了新的文献求助10
12秒前
WY发布了新的文献求助10
13秒前
13秒前
奋斗含巧发布了新的文献求助10
13秒前
Luna完成签到 ,获得积分10
14秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得20
15秒前
callmecjh完成签到,获得积分10
15秒前
晚星发布了新的文献求助10
15秒前
16秒前
觱栗完成签到,获得积分10
16秒前
彳亍1117应助guojingjing采纳,获得10
16秒前
随遇而安应助guojingjing采纳,获得10
16秒前
liian7应助QWE采纳,获得20
16秒前
17秒前
ffff应助ellie采纳,获得10
17秒前
12345完成签到,获得积分10
18秒前
李煜发布了新的文献求助30
18秒前
18秒前
19秒前
19秒前
dzll完成签到,获得积分10
19秒前
20秒前
21秒前
22秒前
宾师傅完成签到 ,获得积分10
23秒前
mtfx发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145276
求助须知:如何正确求助?哪些是违规求助? 2796719
关于积分的说明 7820904
捐赠科研通 2452997
什么是DOI,文献DOI怎么找? 1305336
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464