硼化物
钯
硼
甲酸
材料科学
化学
化学工程
核化学
无机化学
催化作用
色谱法
有机化学
工程类
作者
Yiming Liu,Bo‐Qiang Miao,Haijing Yang,Xuan Ai,Xiaogang Wang,Feng Shi,Pei Chen,Yu Chen
标识
DOI:10.1002/adfm.202402485
摘要
Abstract The rational design of the electronic structure and elemental compositions of anode electrocatalysts for formic acid electrooxidation reaction (FAOR) is paramount for realizing high‐performance direct formic acid fuel cells. Herein, palladium‐boride nanoflowers (Pd‐B NFs) with controllable boron content are rationally designed via a simple wet chemical reduction method, utilizing Pd II ‐dimethylglyoxime as precursor and NaBH 4 as both reductant and boron source. The boron content of Pd‐B NFs can be regulated through manipulation of reaction time, accompanying with the crystal phase transition from face‐centered cubic to hexagonal close‐packed within the parent Pd lattice. The obtained Pd‐B NFs exhibit increased FAOR mass and specific activity with increasing boron content, showcasing remarkable inherent stability and anti‐poisoning capability compare to commercial Pd and platinum (Pt) nanocrystals. Notably, the sample reacted for 12 h reveals high FAOR specific activity (31.5 A m −2 ), which is approximately two times higher than the commercial Pd nanocrystals. Density functional theory calculations disclose that the d‐sp orbital hybridization between Pd and B modifies surface d ‐band properties of Pd, thereby optimizing the adsorption of key intermediates and facilitating FAOR kinetics on the Pd surface. This study paves the way toward the utilization of metal boride‐based materials with simple synthesis methods for various electrocatalysis applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI