Detecting bone lesions in X-ray under diverse acquisition conditions

医学 射线照相术 预处理器 放射科 人工智能 直方图 直方图均衡化 计算机科学 图像(数学)
作者
Tal Zimbalist,Ronnie Rosen,Keren Peri-Hanania,Yaron Caspi,Bar Rinott,Carmel Zeltser-Dekel,E. Bercovich,Yonina C. Eldar,Shai Bagon
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:11 (02)
标识
DOI:10.1117/1.jmi.11.2.024502
摘要

PurposeThe diagnosis of primary bone tumors is challenging as the initial complaints are often non-specific. The early detection of bone cancer is crucial for a favorable prognosis. Incidentally, lesions may be found on radiographs obtained for other reasons. However, these early indications are often missed. We propose an automatic algorithm to detect bone lesions in conventional radiographs to facilitate early diagnosis. Detecting lesions in such radiographs is challenging. First, the prevalence of bone cancer is very low; any method must show high precision to avoid a prohibitive number of false alarms. Second, radiographs taken in health maintenance organizations (HMOs) or emergency departments (EDs) suffer from inherent diversity due to different X-ray machines, technicians, and imaging protocols. This diversity poses a major challenge to any automatic analysis method.ApproachWe propose training an off-the-shelf object detection algorithm to detect lesions in radiographs. The novelty of our approach stems from a dedicated preprocessing stage that directly addresses the diversity of the data. The preprocessing consists of self-supervised region-of-interest detection using vision transformer (ViT), and a foreground-based histogram equalization for contrast enhancement to relevant regions only.ResultsWe evaluate our method via a retrospective study that analyzes bone tumors on radiographs acquired from January 2003 to December 2018 under diverse acquisition protocols. Our method obtains 82.43% sensitivity at a 1.5% false-positive rate and surpasses existing preprocessing methods. For lesion detection, our method achieves 82.5% accuracy and an IoU of 0.69.ConclusionsThe proposed preprocessing method enables effectively coping with the inherent diversity of radiographs acquired in HMOs and EDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乔婉发布了新的文献求助10
刚刚
yuan完成签到,获得积分10
1秒前
吕峰完成签到,获得积分10
2秒前
真实的小伙完成签到,获得积分10
2秒前
舒心飞珍完成签到,获得积分10
3秒前
srx发布了新的文献求助10
4秒前
s_h发布了新的文献求助10
4秒前
Frank发布了新的文献求助10
4秒前
眼睛大的芷珊完成签到 ,获得积分10
5秒前
yuan发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
9秒前
zzzz完成签到,获得积分10
9秒前
keyannn完成签到,获得积分10
10秒前
NexusExplorer应助Double采纳,获得10
10秒前
李爱国应助s_h采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
赘婿应助suke采纳,获得10
14秒前
英俊的铭应助温wenwen采纳,获得10
15秒前
星辰完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
17秒前
cloudy完成签到,获得积分10
17秒前
小丸子发布了新的文献求助30
17秒前
17秒前
善学以致用应助乔婉采纳,获得10
18秒前
CipherSage应助雷雷呀呀采纳,获得10
18秒前
一一完成签到 ,获得积分10
19秒前
丘比特应助zjm采纳,获得10
19秒前
xxxd发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
22秒前
ri_290发布了新的文献求助10
22秒前
23秒前
zhang发布了新的文献求助10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744973
求助须知:如何正确求助?哪些是违规求助? 5423202
关于积分的说明 15351528
捐赠科研通 4885111
什么是DOI,文献DOI怎么找? 2626351
邀请新用户注册赠送积分活动 1575090
关于科研通互助平台的介绍 1531858