亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting bone lesions in X-ray under diverse acquisition conditions

医学 射线照相术 预处理器 放射科 人工智能 直方图 直方图均衡化 计算机科学 图像(数学)
作者
Tal Zimbalist,Ronnie Rosen,Keren Peri-Hanania,Yaron Caspi,Bar Rinott,Carmel Zeltser-Dekel,E. Bercovich,Yonina C. Eldar,Shai Bagon
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:11 (02)
标识
DOI:10.1117/1.jmi.11.2.024502
摘要

PurposeThe diagnosis of primary bone tumors is challenging as the initial complaints are often non-specific. The early detection of bone cancer is crucial for a favorable prognosis. Incidentally, lesions may be found on radiographs obtained for other reasons. However, these early indications are often missed. We propose an automatic algorithm to detect bone lesions in conventional radiographs to facilitate early diagnosis. Detecting lesions in such radiographs is challenging. First, the prevalence of bone cancer is very low; any method must show high precision to avoid a prohibitive number of false alarms. Second, radiographs taken in health maintenance organizations (HMOs) or emergency departments (EDs) suffer from inherent diversity due to different X-ray machines, technicians, and imaging protocols. This diversity poses a major challenge to any automatic analysis method.ApproachWe propose training an off-the-shelf object detection algorithm to detect lesions in radiographs. The novelty of our approach stems from a dedicated preprocessing stage that directly addresses the diversity of the data. The preprocessing consists of self-supervised region-of-interest detection using vision transformer (ViT), and a foreground-based histogram equalization for contrast enhancement to relevant regions only.ResultsWe evaluate our method via a retrospective study that analyzes bone tumors on radiographs acquired from January 2003 to December 2018 under diverse acquisition protocols. Our method obtains 82.43% sensitivity at a 1.5% false-positive rate and surpasses existing preprocessing methods. For lesion detection, our method achieves 82.5% accuracy and an IoU of 0.69.ConclusionsThe proposed preprocessing method enables effectively coping with the inherent diversity of radiographs acquired in HMOs and EDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dana发布了新的文献求助10
2秒前
7秒前
朱朱子完成签到 ,获得积分10
10秒前
11秒前
请问哈完成签到 ,获得积分10
14秒前
王意博发布了新的文献求助10
15秒前
16秒前
酷波er应助jetwang采纳,获得10
18秒前
汉堡包应助王意博采纳,获得10
30秒前
33秒前
38秒前
浮游应助科研通管家采纳,获得10
47秒前
丘比特应助科研通管家采纳,获得10
47秒前
wanci应助科研通管家采纳,获得30
47秒前
bkagyin应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
上官若男应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
HuY完成签到 ,获得积分10
56秒前
Charlie完成签到 ,获得积分10
1分钟前
丘比特应助me采纳,获得30
1分钟前
淡定绮波应助意大利采纳,获得20
1分钟前
me完成签到,获得积分10
1分钟前
1分钟前
1分钟前
忧伤的麦片完成签到,获得积分10
1分钟前
Terraman完成签到,获得积分10
1分钟前
yyd发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
iDong完成签到 ,获得积分10
2分钟前
yanglinhai完成签到 ,获得积分10
2分钟前
木雅阁兮发布了新的文献求助10
2分钟前
jetwang完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
jetwang发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522648
求助须知:如何正确求助?哪些是违规求助? 4613539
关于积分的说明 14539027
捐赠科研通 4551262
什么是DOI,文献DOI怎么找? 2494124
邀请新用户注册赠送积分活动 1475098
关于科研通互助平台的介绍 1446489