已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detecting bone lesions in X-ray under diverse acquisition conditions

医学 射线照相术 预处理器 放射科 人工智能 直方图 直方图均衡化 计算机科学 图像(数学)
作者
Tal Zimbalist,Ronnie Rosen,Keren Peri-Hanania,Yaron Caspi,Bar Rinott,Carmel Zeltser-Dekel,E. Bercovich,Yonina C. Eldar,Shai Bagon
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:11 (02)
标识
DOI:10.1117/1.jmi.11.2.024502
摘要

PurposeThe diagnosis of primary bone tumors is challenging as the initial complaints are often non-specific. The early detection of bone cancer is crucial for a favorable prognosis. Incidentally, lesions may be found on radiographs obtained for other reasons. However, these early indications are often missed. We propose an automatic algorithm to detect bone lesions in conventional radiographs to facilitate early diagnosis. Detecting lesions in such radiographs is challenging. First, the prevalence of bone cancer is very low; any method must show high precision to avoid a prohibitive number of false alarms. Second, radiographs taken in health maintenance organizations (HMOs) or emergency departments (EDs) suffer from inherent diversity due to different X-ray machines, technicians, and imaging protocols. This diversity poses a major challenge to any automatic analysis method.ApproachWe propose training an off-the-shelf object detection algorithm to detect lesions in radiographs. The novelty of our approach stems from a dedicated preprocessing stage that directly addresses the diversity of the data. The preprocessing consists of self-supervised region-of-interest detection using vision transformer (ViT), and a foreground-based histogram equalization for contrast enhancement to relevant regions only.ResultsWe evaluate our method via a retrospective study that analyzes bone tumors on radiographs acquired from January 2003 to December 2018 under diverse acquisition protocols. Our method obtains 82.43% sensitivity at a 1.5% false-positive rate and surpasses existing preprocessing methods. For lesion detection, our method achieves 82.5% accuracy and an IoU of 0.69.ConclusionsThe proposed preprocessing method enables effectively coping with the inherent diversity of radiographs acquired in HMOs and EDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123完成签到,获得积分10
刚刚
yingying完成签到 ,获得积分10
1秒前
yuanyuan发布了新的文献求助10
3秒前
缥缈的映萱完成签到,获得积分20
3秒前
3秒前
小白完成签到 ,获得积分10
4秒前
4秒前
HugginBearOuO完成签到,获得积分10
4秒前
4秒前
HYD完成签到 ,获得积分10
7秒前
liubai发布了新的文献求助30
7秒前
峻萱完成签到 ,获得积分10
8秒前
栗子完成签到,获得积分10
9秒前
9秒前
GG发布了新的文献求助10
10秒前
12秒前
怡然剑成完成签到 ,获得积分10
12秒前
13秒前
鲸落完成签到,获得积分10
13秒前
15秒前
15秒前
Malik发布了新的文献求助10
17秒前
满意妙梦发布了新的文献求助10
17秒前
23533213发布了新的文献求助10
17秒前
鲸落发布了新的文献求助10
18秒前
小休完成签到 ,获得积分10
20秒前
R18686226306发布了新的文献求助10
20秒前
21秒前
一路生花碎西瓜完成签到 ,获得积分10
21秒前
23秒前
Worenxian完成签到 ,获得积分10
23秒前
钉钉完成签到 ,获得积分10
25秒前
JamesPei应助23533213采纳,获得10
25秒前
Micheal完成签到,获得积分10
26秒前
robin完成签到,获得积分10
27秒前
YAYA发布了新的文献求助10
27秒前
Aiven完成签到,获得积分10
28秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599548
求助须知:如何正确求助?哪些是违规求助? 4685229
关于积分的说明 14838214
捐赠科研通 4669062
什么是DOI,文献DOI怎么找? 2538076
邀请新用户注册赠送积分活动 1505449
关于科研通互助平台的介绍 1470833