Detecting bone lesions in X-ray under diverse acquisition conditions

医学 射线照相术 预处理器 放射科 人工智能 直方图 直方图均衡化 计算机科学 图像(数学)
作者
Tal Zimbalist,Ronnie Rosen,Keren Peri-Hanania,Yaron Caspi,Bar Rinott,Carmel Zeltser-Dekel,E. Bercovich,Yonina C. Eldar,Shai Bagon
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:11 (02)
标识
DOI:10.1117/1.jmi.11.2.024502
摘要

PurposeThe diagnosis of primary bone tumors is challenging as the initial complaints are often non-specific. The early detection of bone cancer is crucial for a favorable prognosis. Incidentally, lesions may be found on radiographs obtained for other reasons. However, these early indications are often missed. We propose an automatic algorithm to detect bone lesions in conventional radiographs to facilitate early diagnosis. Detecting lesions in such radiographs is challenging. First, the prevalence of bone cancer is very low; any method must show high precision to avoid a prohibitive number of false alarms. Second, radiographs taken in health maintenance organizations (HMOs) or emergency departments (EDs) suffer from inherent diversity due to different X-ray machines, technicians, and imaging protocols. This diversity poses a major challenge to any automatic analysis method.ApproachWe propose training an off-the-shelf object detection algorithm to detect lesions in radiographs. The novelty of our approach stems from a dedicated preprocessing stage that directly addresses the diversity of the data. The preprocessing consists of self-supervised region-of-interest detection using vision transformer (ViT), and a foreground-based histogram equalization for contrast enhancement to relevant regions only.ResultsWe evaluate our method via a retrospective study that analyzes bone tumors on radiographs acquired from January 2003 to December 2018 under diverse acquisition protocols. Our method obtains 82.43% sensitivity at a 1.5% false-positive rate and surpasses existing preprocessing methods. For lesion detection, our method achieves 82.5% accuracy and an IoU of 0.69.ConclusionsThe proposed preprocessing method enables effectively coping with the inherent diversity of radiographs acquired in HMOs and EDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaos完成签到,获得积分10
刚刚
zhangj完成签到 ,获得积分10
1秒前
nn发布了新的文献求助10
1秒前
ZZX完成签到,获得积分10
2秒前
儒雅的蜜粉完成签到,获得积分10
2秒前
leo发布了新的文献求助10
3秒前
3秒前
17312852068完成签到 ,获得积分10
3秒前
驿路梨花完成签到,获得积分10
3秒前
大漂亮完成签到,获得积分20
4秒前
yao关注了科研通微信公众号
4秒前
小陈完成签到,获得积分20
5秒前
Loeop完成签到,获得积分10
5秒前
5秒前
elivsZhou发布了新的文献求助10
5秒前
李可乐完成签到,获得积分10
5秒前
科研通AI6应助XXXX采纳,获得10
6秒前
雨田完成签到,获得积分10
6秒前
6秒前
猩猩星完成签到,获得积分10
6秒前
7秒前
茁茁发布了新的文献求助10
7秒前
likeit完成签到,获得积分20
8秒前
8秒前
陶远望完成签到,获得积分0
8秒前
大方芾发布了新的文献求助10
8秒前
河中医朵花完成签到,获得积分10
8秒前
lee完成签到,获得积分10
9秒前
艾雪完成签到,获得积分10
9秒前
大成子完成签到,获得积分10
10秒前
Mic应助刘运丽采纳,获得10
10秒前
黎黎发布了新的文献求助10
10秒前
10秒前
酷波er应助布丁圆团采纳,获得10
10秒前
10秒前
凌兰完成签到 ,获得积分10
11秒前
六道完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
DD完成签到,获得积分10
12秒前
Jasper应助VV采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977