Detecting bone lesions in X-ray under diverse acquisition conditions

医学 射线照相术 预处理器 放射科 人工智能 直方图 直方图均衡化 计算机科学 图像(数学)
作者
Tal Zimbalist,Ronnie Rosen,Keren Peri-Hanania,Yaron Caspi,Bar Rinott,Carmel Zeltser-Dekel,E. Bercovich,Yonina C. Eldar,Shai Bagon
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:11 (02)
标识
DOI:10.1117/1.jmi.11.2.024502
摘要

PurposeThe diagnosis of primary bone tumors is challenging as the initial complaints are often non-specific. The early detection of bone cancer is crucial for a favorable prognosis. Incidentally, lesions may be found on radiographs obtained for other reasons. However, these early indications are often missed. We propose an automatic algorithm to detect bone lesions in conventional radiographs to facilitate early diagnosis. Detecting lesions in such radiographs is challenging. First, the prevalence of bone cancer is very low; any method must show high precision to avoid a prohibitive number of false alarms. Second, radiographs taken in health maintenance organizations (HMOs) or emergency departments (EDs) suffer from inherent diversity due to different X-ray machines, technicians, and imaging protocols. This diversity poses a major challenge to any automatic analysis method.ApproachWe propose training an off-the-shelf object detection algorithm to detect lesions in radiographs. The novelty of our approach stems from a dedicated preprocessing stage that directly addresses the diversity of the data. The preprocessing consists of self-supervised region-of-interest detection using vision transformer (ViT), and a foreground-based histogram equalization for contrast enhancement to relevant regions only.ResultsWe evaluate our method via a retrospective study that analyzes bone tumors on radiographs acquired from January 2003 to December 2018 under diverse acquisition protocols. Our method obtains 82.43% sensitivity at a 1.5% false-positive rate and surpasses existing preprocessing methods. For lesion detection, our method achieves 82.5% accuracy and an IoU of 0.69.ConclusionsThe proposed preprocessing method enables effectively coping with the inherent diversity of radiographs acquired in HMOs and EDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
岳维芸完成签到,获得积分20
1秒前
1秒前
1秒前
高兴璎发布了新的文献求助10
1秒前
科研通AI6应助顾瑶采纳,获得10
3秒前
姜惠发布了新的文献求助10
3秒前
lsh完成签到 ,获得积分10
3秒前
谦让的板栗完成签到 ,获得积分20
3秒前
禹王神槊完成签到,获得积分10
3秒前
橙子完成签到,获得积分10
3秒前
无名应助yuzi采纳,获得20
4秒前
bkagyin应助wuran采纳,获得10
4秒前
4秒前
乌苏苏发布了新的文献求助10
4秒前
sumugeng完成签到,获得积分10
4秒前
山野的雾完成签到 ,获得积分10
5秒前
zk001完成签到,获得积分10
5秒前
xl发布了新的文献求助10
5秒前
孙皓阳发布了新的文献求助10
5秒前
5秒前
Ariel完成签到,获得积分10
6秒前
智障猫完成签到,获得积分10
6秒前
shaung yang发布了新的文献求助10
6秒前
mawari完成签到,获得积分20
6秒前
缥缈完成签到,获得积分10
6秒前
搬砖打工人完成签到,获得积分10
7秒前
素素完成签到,获得积分10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助20
8秒前
顾瑶应助文件撤销了驳回
9秒前
9秒前
海鸥跳海完成签到,获得积分10
9秒前
缥缈发布了新的文献求助10
10秒前
CipherSage应助Normally采纳,获得10
10秒前
10秒前
辛勤的乌完成签到,获得积分10
11秒前
bkagyin应助孙皓阳采纳,获得10
11秒前
XU2025完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302