Detecting bone lesions in X-ray under diverse acquisition conditions

医学 射线照相术 预处理器 放射科 人工智能 直方图 直方图均衡化 计算机科学 图像(数学)
作者
Tal Zimbalist,Ronnie Rosen,Keren Peri-Hanania,Yaron Caspi,Bar Rinott,Carmel Zeltser-Dekel,E. Bercovich,Yonina C. Eldar,Shai Bagon
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:11 (02)
标识
DOI:10.1117/1.jmi.11.2.024502
摘要

PurposeThe diagnosis of primary bone tumors is challenging as the initial complaints are often non-specific. The early detection of bone cancer is crucial for a favorable prognosis. Incidentally, lesions may be found on radiographs obtained for other reasons. However, these early indications are often missed. We propose an automatic algorithm to detect bone lesions in conventional radiographs to facilitate early diagnosis. Detecting lesions in such radiographs is challenging. First, the prevalence of bone cancer is very low; any method must show high precision to avoid a prohibitive number of false alarms. Second, radiographs taken in health maintenance organizations (HMOs) or emergency departments (EDs) suffer from inherent diversity due to different X-ray machines, technicians, and imaging protocols. This diversity poses a major challenge to any automatic analysis method.ApproachWe propose training an off-the-shelf object detection algorithm to detect lesions in radiographs. The novelty of our approach stems from a dedicated preprocessing stage that directly addresses the diversity of the data. The preprocessing consists of self-supervised region-of-interest detection using vision transformer (ViT), and a foreground-based histogram equalization for contrast enhancement to relevant regions only.ResultsWe evaluate our method via a retrospective study that analyzes bone tumors on radiographs acquired from January 2003 to December 2018 under diverse acquisition protocols. Our method obtains 82.43% sensitivity at a 1.5% false-positive rate and surpasses existing preprocessing methods. For lesion detection, our method achieves 82.5% accuracy and an IoU of 0.69.ConclusionsThe proposed preprocessing method enables effectively coping with the inherent diversity of radiographs acquired in HMOs and EDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxxlxxlxx发布了新的文献求助10
刚刚
汉堡包应助呜啦啦啦采纳,获得10
1秒前
我在人间喝咖啡完成签到,获得积分10
1秒前
Molly发布了新的文献求助10
2秒前
fan发布了新的文献求助10
2秒前
4秒前
吴小医完成签到,获得积分10
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得20
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
咖啡豆应助科研通管家采纳,获得30
5秒前
5秒前
6秒前
默默含卉完成签到,获得积分10
7秒前
yoyo发布了新的文献求助10
8秒前
CipherSage应助香蕉子骞采纳,获得10
9秒前
hongjie_w完成签到,获得积分20
9秒前
卫化蛹完成签到,获得积分20
10秒前
lululala发布了新的文献求助10
10秒前
oliv完成签到 ,获得积分10
10秒前
hongjie_w发布了新的文献求助10
11秒前
fan完成签到,获得积分10
12秒前
15秒前
lululala完成签到,获得积分10
16秒前
17秒前
18秒前
打打应助穆一手采纳,获得10
18秒前
小于一发布了新的文献求助10
18秒前
18秒前
19秒前
童年的回忆klwqqt完成签到,获得积分10
20秒前
Lili发布了新的文献求助10
21秒前
淡定如之发布了新的文献求助10
21秒前
gggghhhh发布了新的文献求助10
22秒前
我在人间喝咖啡关注了科研通微信公众号
23秒前
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141332
求助须知:如何正确求助?哪些是违规求助? 2792381
关于积分的说明 7802238
捐赠科研通 2448574
什么是DOI,文献DOI怎么找? 1302618
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237