Detecting bone lesions in X-ray under diverse acquisition conditions

医学 射线照相术 预处理器 放射科 人工智能 直方图 直方图均衡化 计算机科学 图像(数学)
作者
Tal Zimbalist,Ronnie Rosen,Keren Peri-Hanania,Yaron Caspi,Bar Rinott,Carmel Zeltser-Dekel,E. Bercovich,Yonina C. Eldar,Shai Bagon
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:11 (02)
标识
DOI:10.1117/1.jmi.11.2.024502
摘要

PurposeThe diagnosis of primary bone tumors is challenging as the initial complaints are often non-specific. The early detection of bone cancer is crucial for a favorable prognosis. Incidentally, lesions may be found on radiographs obtained for other reasons. However, these early indications are often missed. We propose an automatic algorithm to detect bone lesions in conventional radiographs to facilitate early diagnosis. Detecting lesions in such radiographs is challenging. First, the prevalence of bone cancer is very low; any method must show high precision to avoid a prohibitive number of false alarms. Second, radiographs taken in health maintenance organizations (HMOs) or emergency departments (EDs) suffer from inherent diversity due to different X-ray machines, technicians, and imaging protocols. This diversity poses a major challenge to any automatic analysis method.ApproachWe propose training an off-the-shelf object detection algorithm to detect lesions in radiographs. The novelty of our approach stems from a dedicated preprocessing stage that directly addresses the diversity of the data. The preprocessing consists of self-supervised region-of-interest detection using vision transformer (ViT), and a foreground-based histogram equalization for contrast enhancement to relevant regions only.ResultsWe evaluate our method via a retrospective study that analyzes bone tumors on radiographs acquired from January 2003 to December 2018 under diverse acquisition protocols. Our method obtains 82.43% sensitivity at a 1.5% false-positive rate and surpasses existing preprocessing methods. For lesion detection, our method achieves 82.5% accuracy and an IoU of 0.69.ConclusionsThe proposed preprocessing method enables effectively coping with the inherent diversity of radiographs acquired in HMOs and EDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxd20103316完成签到,获得积分10
1秒前
爱吃芝士完成签到,获得积分10
1秒前
1秒前
河南老友发布了新的文献求助10
1秒前
彭于晏应助lixiaoya采纳,获得30
1秒前
2秒前
老干部发布了新的文献求助10
2秒前
2秒前
2秒前
wulala发布了新的文献求助10
2秒前
诸嵩完成签到,获得积分10
2秒前
崔荣浩发布了新的文献求助10
2秒前
Criminology34应助好运丫丫耶采纳,获得10
3秒前
jiang完成签到,获得积分10
3秒前
3秒前
英俊的念寒完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
华仔应助奶黄包采纳,获得10
3秒前
3秒前
3秒前
善学以致用应助asd采纳,获得30
4秒前
森林木完成签到,获得积分10
4秒前
冯琳栋关注了科研通微信公众号
4秒前
张欣宇应助哈登采纳,获得10
4秒前
zwh完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
杨惠子发布了新的文献求助10
6秒前
6秒前
6秒前
小飞完成签到,获得积分10
6秒前
6秒前
柚又发布了新的文献求助10
6秒前
My完成签到,获得积分10
6秒前
asd完成签到,获得积分10
7秒前
7秒前
Jerry完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
孙璧宬发布了新的文献求助10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692686
求助须知:如何正确求助?哪些是违规求助? 5089409
关于积分的说明 15209142
捐赠科研通 4849841
什么是DOI,文献DOI怎么找? 2601323
邀请新用户注册赠送积分活动 1553128
关于科研通互助平台的介绍 1511300