Segmentation and Detection of Crop Pests using Novel U‐Net with Hybrid Deep Learning Mechanism

计算机科学 人工智能 卷积神经网络 深度学习 Python(编程语言) 分割 模式识别(心理学) 图像分割 机器学习 操作系统
作者
Nagaveni Biradar,Girisha Hosalli
出处
期刊:Pest Management Science [Wiley]
卷期号:80 (8): 3795-3807 被引量:1
标识
DOI:10.1002/ps.8083
摘要

Abstract OBJECTIVE In India, agriculture is the backbone of economic sectors because of the increasing demand for agricultural products. However, agricultural production has been affected due to the presence of pests in crops. Several methods were developed to solve the crop pest detection issue, but they failed to achieve better results. Therefore, the proposed study used a new hybrid deep learning mechanism for segmenting and detecting pests in crops. METHOD Image collection, pre‐processing, segmentation, and detection are the steps involved in the proposed study. There are three steps involved in pre‐processing: image rescaling, equalized joint histogram based contrast enhancement (Eq‐JH‐CE), and bendlet transform based De‐noising (BT‐D). Next, the pre‐processed images are segmented using the DenseNet‐77 UNet model. In this section, the complexity of the conventional UNet model is mitigated by hybridizing it with the DenseNet‐77 model. Once the segmentation is done with an improved model, the crop pests are detected and classified by proposing a novel Convolutional Slice‐Attention based Gated Recurrent Unit (CS‐AGRU) model. The proposed model is the combination of a convolutional Neural Network (CNN) and a Gated Recurrent Unit (GRU). In order to achieve better accuracy outcomes, the proposed study hybridized these models due to their great efficiency. Also, the slice attention mechanism is applied over the proposed model for fetching relevant feature information and thereby enhancing the computational efficiency. So, pests in the crop are finally detected using the proposed method. RESULT The Python programming language is utilized for implementation. The proposed approach shows a better accuracy range of 99.52%, IoU of 99.1%, precision of 98.88%, recall of 99.53%, F1‐score of 99.35%, and FNR of 0.011 compared to existing techniques. DISCUSSION Identifying and classifying pests helps farmers anticipate potential threats to their crops. By knowing which pests are prevalent in their region or are likely to infest certain crops, farmers can implement preventive measures to protect their crops, such as planting pest‐resistant varieties, using crop rotation, or deploying traps and barriers. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亮晶晶429完成签到,获得积分20
刚刚
王旭智完成签到,获得积分10
刚刚
无限的慕凝完成签到,获得积分10
2秒前
wanci应助lxlcx采纳,获得10
3秒前
冒失的饭饭完成签到,获得积分10
4秒前
大尾巴完成签到 ,获得积分10
4秒前
qiandi完成签到,获得积分10
4秒前
天天完成签到 ,获得积分10
4秒前
甜辣小泡芙完成签到,获得积分10
4秒前
qql发布了新的文献求助10
5秒前
bluechen800205完成签到,获得积分10
5秒前
多金完成签到,获得积分10
5秒前
完美世界应助WWXWWX采纳,获得10
5秒前
圆圆完成签到 ,获得积分20
6秒前
普陀hotdog完成签到,获得积分10
6秒前
7秒前
Qi完成签到,获得积分10
7秒前
慕青应助12rcli采纳,获得10
8秒前
搜集达人应助panaxing采纳,获得10
9秒前
9秒前
9秒前
善学以致用应助刘荣圣采纳,获得10
10秒前
1111完成签到,获得积分0
10秒前
斯文败类应助孤独的匕采纳,获得10
11秒前
11秒前
qqq发布了新的文献求助10
12秒前
茉莉园完成签到,获得积分10
13秒前
材料虎发布了新的文献求助10
13秒前
15秒前
欢喜完成签到,获得积分10
16秒前
聚乙二醇发布了新的文献求助10
16秒前
17秒前
缥缈的绿兰完成签到,获得积分20
18秒前
羡鱼完成签到,获得积分10
18秒前
18秒前
逝水无痕完成签到,获得积分10
19秒前
19秒前
小太阳红红火火完成签到,获得积分10
19秒前
19秒前
平常亦凝发布了新的文献求助10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134170
求助须知:如何正确求助?哪些是违规求助? 2785077
关于积分的说明 7769993
捐赠科研通 2440590
什么是DOI,文献DOI怎么找? 1297488
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792