PSparseFormer: Enhancing Fault Feature Extraction Based on Parallel Sparse Self-Attention and Multiscale Broadcast Feedforward Block

计算机科学 特征提取 块(置换群论) 稀疏矩阵 模式识别(心理学) 并行计算 算法 人工智能 数学 物理 几何学 量子力学 高斯分布
作者
Jie Wang,Haidong Shao,Ying Peng,Bin Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 22982-22991 被引量:26
标识
DOI:10.1109/jiot.2024.3377674
摘要

Currently, various state-of-the-art Transformer variants have gained widespread attention in the field of fault diagnosis. However, these Transformers often adopt a global sequence modelling strategy to extract fault features, which is susceptible to the interference of redundant information and strong noise, due to the local and sparse nature of vibration signals. Therefore, a new feature enhancement and end-to-end fault diagnosis model named PSparseFormer is proposed in this paper. Firstly, a parallel sparse self-attention module is designed to efficiently extract the local and sparse features at different locations of complex vibration signals to reduce the over-sensitivity to irrelevant information. Secondly, the multiscale broadcast feed-forward block is developed to simultaneously facilitate global and local spatial feature information transmission and adjust the contribution of features at different levels, enhancing the robustness of local feature extraction against noise. Experimental analysis using datasets from two planetary gearboxes illustrates the effectiveness of the proposed method in addressing challenges related to feature extraction and enhancement, particularly in the presence of strong noise interference. Comparative evaluations against various state-of-the-art Transformers reveal that the proposed method exhibits superior diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
aifd完成签到,获得积分10
2秒前
2秒前
每天都在找完成签到,获得积分10
4秒前
4秒前
5秒前
淡烟流水发布了新的文献求助10
6秒前
6秒前
小李发布了新的文献求助30
7秒前
汉堡包应助明芬采纳,获得30
7秒前
爆米花应助彭栋采纳,获得10
7秒前
8秒前
8秒前
MeiyanZou完成签到 ,获得积分10
8秒前
11秒前
11秒前
潇湘雪月发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
感动黄豆发布了新的文献求助10
13秒前
hhhblabla应助东方红采纳,获得10
15秒前
Poker应助sb采纳,获得10
16秒前
Ginger发布了新的文献求助10
16秒前
吃骨头的猫完成签到,获得积分10
16秒前
小李完成签到,获得积分10
16秒前
16秒前
17秒前
明芬发布了新的文献求助30
19秒前
19秒前
Smile完成签到,获得积分10
19秒前
Chaoe完成签到,获得积分10
22秒前
建国发布了新的文献求助10
23秒前
闪闪w发布了新的文献求助10
26秒前
淡烟流水完成签到,获得积分10
26秒前
俏皮芷蕊完成签到,获得积分10
27秒前
完美世界应助忐忑的阑香采纳,获得10
27秒前
华仔应助兴奋千兰采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105