PSparseFormer: Enhancing Fault Feature Extraction Based On Parallel Sparse Self-Attention and Multiscale Broadcast Feed-Forward Block

计算机科学 特征提取 块(置换群论) 稀疏矩阵 模式识别(心理学) 并行计算 算法 人工智能 数学 几何学 量子力学 物理 高斯分布
作者
Jie Wang,Haidong Shao,Ying Peng,Bin Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 22982-22991 被引量:12
标识
DOI:10.1109/jiot.2024.3377674
摘要

Currently, various state-of-the-art Transformer variants have gained widespread attention in the field of fault diagnosis. However, these Transformers often adopt a global sequence modelling strategy to extract fault features, which is susceptible to the interference of redundant information and strong noise, due to the local and sparse nature of vibration signals. Therefore, a new feature enhancement and end-to-end fault diagnosis model named PSparseFormer is proposed in this paper. Firstly, a parallel sparse self-attention module is designed to efficiently extract the local and sparse features at different locations of complex vibration signals to reduce the over-sensitivity to irrelevant information. Secondly, the multiscale broadcast feed-forward block is developed to simultaneously facilitate global and local spatial feature information transmission and adjust the contribution of features at different levels, enhancing the robustness of local feature extraction against noise. Experimental analysis using datasets from two planetary gearboxes illustrates the effectiveness of the proposed method in addressing challenges related to feature extraction and enhancement, particularly in the presence of strong noise interference. Comparative evaluations against various state-of-the-art Transformers reveal that the proposed method exhibits superior diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Abi完成签到,获得积分10
刚刚
wenwen完成签到,获得积分10
1秒前
1秒前
仁者无敌完成签到,获得积分10
4秒前
DONNYTIO完成签到,获得积分10
11秒前
冷傲菠萝完成签到 ,获得积分10
12秒前
忽忽完成签到,获得积分10
12秒前
13秒前
zhaolee完成签到 ,获得积分10
14秒前
16秒前
大模型应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
王灿灿应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
完美冷安完成签到,获得积分10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
20秒前
李健应助陨落的繁星采纳,获得10
23秒前
昱昱完成签到 ,获得积分10
23秒前
24秒前
凌云完成签到,获得积分10
24秒前
小玲仔完成签到,获得积分10
25秒前
26秒前
27秒前
le完成签到 ,获得积分10
27秒前
温暖的数据线完成签到 ,获得积分10
27秒前
123发布了新的文献求助30
27秒前
27秒前
28秒前
子清完成签到,获得积分0
28秒前
Menand发布了新的文献求助10
28秒前
流苏完成签到,获得积分10
32秒前
lzl发布了新的文献求助10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139837
求助须知:如何正确求助?哪些是违规求助? 2790697
关于积分的说明 7796331
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185