Shared Manifold Regularized Joint Feature Selection for Joint Classification and Regression in Alzheimer’s Disease Diagnosis

人工智能 特征选择 判别式 模式识别(心理学) 回归 计算机科学 机器学习 线性判别分析 子空间拓扑 正规化(语言学) 特征向量 回归分析 数学 统计
作者
Zhi Chen,Yongguo Liu,Yun Zhang,Jiajing Zhu,Qiaoqin Li,Xindong Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2730-2745 被引量:2
标识
DOI:10.1109/tip.2024.3382600
摘要

In Alzheimer's disease (AD) diagnosis, joint feature selection for predicting disease labels (classification) and estimating cognitive scores (regression) with neuroimaging data has received increasing attention. In this paper, we propose a model named Shared Manifold regularized Joint Feature Selection (SMJFS) that performs classification and regression in a unified framework for AD diagnosis. For classification, unlike the existing works that build least squares regression models which are insufficient in the ability of extracting discriminative information for classification, we design an objective function that integrates linear discriminant analysis and subspace sparsity regularization for acquiring an informative feature subset. Furthermore, the local data relationships are learned according to the samples' transformed distances to exploit the local data structure adaptively. For regression, in contrast to previous works that overlook the correlations among cognitive scores, we learn a latent score space to capture the correlations and employ the latent space to design a regression model with ℓ 2,1 -norm regularization, facilitating the feature selection in regression task. Moreover, the missing cognitive scores can be recovered in the latent space for increasing the number of available training samples. Meanwhile, to capture the correlations between the two tasks and describe the local relationships between samples, we construct an adaptive shared graph to guide the subspace learning in classification and the latent cognitive score learning in regression simultaneously. An efficient iterative optimization algorithm is proposed to solve the optimization problem. Extensive experiments on three datasets validate the discriminability of the features selected by SMJFS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有谁共鸣发布了新的文献求助10
2秒前
桀桀桀完成签到,获得积分10
2秒前
胡萝卜应助负责的方盒采纳,获得10
3秒前
高大雁兰发布了新的文献求助10
4秒前
5秒前
专注的曼容完成签到,获得积分20
5秒前
6秒前
科研通AI5应助JIA采纳,获得30
7秒前
学术小王子完成签到,获得积分10
7秒前
zyj发布了新的文献求助10
10秒前
天明完成签到,获得积分10
13秒前
14秒前
15秒前
Akim应助飞翔的企鹅采纳,获得30
16秒前
收拾收拾发布了新的文献求助30
16秒前
活力安南完成签到,获得积分10
19秒前
robinhood完成签到,获得积分10
19秒前
过时的映雁完成签到,获得积分10
19秒前
专注的班发布了新的文献求助10
20秒前
田様应助276868sxzz采纳,获得10
21秒前
first发布了新的文献求助10
21秒前
李健的粉丝团团长应助zyj采纳,获得10
21秒前
科研通AI5应助安殿夏采纳,获得10
23秒前
潘宋完成签到,获得积分10
23秒前
研友_LX66qZ完成签到,获得积分10
23秒前
HMONEY应助街霸采纳,获得10
23秒前
24秒前
25秒前
25秒前
Nzee完成签到,获得积分10
25秒前
JIA完成签到,获得积分20
26秒前
26秒前
华仔应助mice33采纳,获得10
26秒前
共享精神应助高大雁兰采纳,获得10
27秒前
CodeCraft应助爬不起来采纳,获得10
28秒前
yy应助简易采纳,获得10
30秒前
丘比特应助nnn采纳,获得10
31秒前
first完成签到,获得积分10
32秒前
JIA发布了新的文献求助30
32秒前
wzz完成签到,获得积分10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740628
求助须知:如何正确求助?哪些是违规求助? 3283472
关于积分的说明 10035486
捐赠科研通 3000287
什么是DOI,文献DOI怎么找? 1646438
邀请新用户注册赠送积分活动 783615
科研通“疑难数据库(出版商)”最低求助积分说明 750411