Development of artificial intelligence edge computing based wearable device for fall detection and prevention of elderly people

可穿戴计算机 人工智能 边缘计算 计算机科学 可穿戴技术 GSM演进的增强数据速率 嵌入式系统
作者
Paramasivam Alagumariappan,Ferlin Deva Shahila D,M Jenath,Sivakumaran T. S,Sakthivel Sankaran,Pavan Sai Kiran Reddy Pittu,S. Vijayalakshmi
出处
期刊:Heliyon [Elsevier]
卷期号:10 (8): e28688-e28688 被引量:3
标识
DOI:10.1016/j.heliyon.2024.e28688
摘要

Elderly falls are a major concerning threat resulting in over 1.5–2 million elderly people experiencing severe injuries and 1 million deaths yearly. Falls experienced by Elderly people may lead to a long‐term negative impact on their physical and psychological health conditions. Major healthcare research had focused on this lately to detect and prevent the fall. In this work, an Artificial Intelligence (AI) edge computing based wearable device is designed and developed for detection and prevention of fall of elderly people. Further, the various deep learning algorithms such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) are utilized for activity recognition of elderly. Also, the CNN-LSTM, RNN-LSTM and GRU-LSTM with and without attention layer respectively are utilized and the performance metrics are analyzed to find the best deep learning model. Furthermore, the three different hardware boards such as Jetson Nano developer board, Raspberry PI 3 and 4 are utilized as an AI edge computing device and the best deep learning model is implemented and the computation time is evaluated. Results demonstrate that the CNN-LSTM with attention layer exhibits the accuracy, recall, precision and F1_Score of 97%, 98%, 98% and 0.98 respectively which is better when compared to other deep learning models. Also, the computation time of NVIDIA Jetson Nano is less when compared to other edge computing devices. This work appears to be of high societal relevance since the proposed wearable device can be used to monitor the activity of elderly and prevents the elderly falls which improve the quality of life of elderly people.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晶晶发布了新的文献求助10
刚刚
思源应助秋天的向日葵采纳,获得10
刚刚
Haisne发布了新的文献求助10
3秒前
火星上忆寒完成签到,获得积分10
5秒前
文艺的炳完成签到,获得积分10
7秒前
Roach发布了新的文献求助10
9秒前
12秒前
15秒前
科研通AI2S应助Haisne采纳,获得10
15秒前
科研通AI2S应助鹤鸣采纳,获得10
15秒前
16秒前
16秒前
17秒前
番薯圆完成签到,获得积分10
18秒前
记忆力超人完成签到,获得积分10
21秒前
YU辰发布了新的文献求助10
22秒前
番薯圆发布了新的文献求助10
22秒前
24秒前
24秒前
25秒前
草莓奶昔发布了新的文献求助20
26秒前
ClancyCheng完成签到,获得积分10
26秒前
科研通AI2S应助学术laji采纳,获得10
27秒前
蒋政发布了新的文献求助10
29秒前
茶博士完成签到,获得积分10
30秒前
大虫发布了新的文献求助10
30秒前
桂鱼饭发布了新的文献求助10
30秒前
YU辰完成签到,获得积分10
30秒前
科研通AI2S应助huvy采纳,获得10
31秒前
废寝忘食完成签到,获得积分10
38秒前
xxx完成签到,获得积分10
40秒前
自信的九娘完成签到,获得积分10
41秒前
汉堡包应助悟空采纳,获得10
42秒前
alex发布了新的文献求助30
44秒前
lin完成签到 ,获得积分10
45秒前
科目三应助云风采纳,获得10
46秒前
HEIKU应助xxx采纳,获得10
46秒前
kid1912完成签到,获得积分10
47秒前
Lucas应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268143
求助须知:如何正确求助?哪些是违规求助? 2907623
关于积分的说明 8342612
捐赠科研通 2578054
什么是DOI,文献DOI怎么找? 1401635
科研通“疑难数据库(出版商)”最低求助积分说明 655107
邀请新用户注册赠送积分活动 634186