Anomaly Detection for Medical Images Using Heterogeneous Auto-Encoder

计算机科学 异常检测 过度拟合 人工智能 像素 计算机视觉 卷积神经网络 自编码 医学影像学 模式识别(心理学) 特征(语言学) 编码器 深度学习 人工神经网络 操作系统 哲学 语言学
作者
Shuai Lu,Weihang Zhang,He Zhao,Hanruo Liu,Ningli Wang,Huiqi Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2770-2782 被引量:2
标识
DOI:10.1109/tip.2024.3381435
摘要

Anomaly detection is an important task for medical image analysis, which can alleviate the reliance of supervised methods on large labelled datasets. Most existing methods use a pixel-wise self-reconstruction framework for anomaly detection. However, there are two challenges of these studies: 1) they tend to overfit learning an identity mapping between the input and output, which leads to failure in detecting abnormal samples; 2) the reconstruction considers the pixel-wise differences which may lead to an undesirable result. To mitigate the above problems, we propose a novel heterogeneous Auto-Encoder (Hetero-AE) for medical anomaly detection. Our model utilizes a convolutional neural network (CNN) as the encoder and a hybrid CNN-Transformer network as the decoder. The heterogeneous structure enables the model to learn the intrinsic information of normal data and enlarge the difference on abnormal samples. To fully exploit the effectiveness of Transformer in the hybrid network, a multi-scale sparse Transformer block is proposed to trade off modelling long-range feature dependencies and high computational costs. Moreover, the multi-stage feature comparison is introduced to reduce the noise of pixel-wise comparison. Extensive experiments on four public datasets (i.e., retinal OCT, chest X-ray, brain MRI, and COVID-19 ) verify the effectiveness of our method on different imaging modalities for anomaly detection. Additionally, our method can accurately detect tumors in brain MRI and lesions in retinal OCT with interpretable heatmaps to locate lesion areas, assisting clinicians in diagnosing abnormalities efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周周发布了新的文献求助10
刚刚
1秒前
科研通AI5应助解青文采纳,获得10
1秒前
科研通AI5应助魏伯安采纳,获得30
1秒前
nekoneko完成签到,获得积分10
4秒前
4秒前
5秒前
帅关发布了新的文献求助10
5秒前
yyyyy语言发布了新的文献求助10
6秒前
asheng98完成签到 ,获得积分10
7秒前
Chen完成签到,获得积分10
7秒前
慕青应助guajiguaji采纳,获得10
8秒前
圣晟胜发布了新的文献求助10
9秒前
9秒前
9秒前
不会失忆完成签到,获得积分10
11秒前
思源应助路边一颗小草采纳,获得10
11秒前
上官若男应助帅关采纳,获得10
12秒前
qin完成签到,获得积分10
13秒前
13秒前
流浪小诗人完成签到,获得积分10
13秒前
15秒前
知性的觅露完成签到,获得积分10
15秒前
朱湋帆完成签到 ,获得积分10
15秒前
devil发布了新的文献求助10
16秒前
乐乐应助咸鱼一号采纳,获得10
17秒前
19秒前
youjiang完成签到,获得积分10
19秒前
devil完成签到,获得积分10
19秒前
20秒前
20秒前
舞拽拽完成签到 ,获得积分10
22秒前
sunaijia完成签到,获得积分0
22秒前
雪白雍发布了新的文献求助10
22秒前
XiangXu完成签到,获得积分10
23秒前
guajiguaji发布了新的文献求助10
23秒前
23秒前
CipherSage应助liuq采纳,获得10
23秒前
优美的冰巧完成签到 ,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849