Anomaly Detection for Medical Images Using Heterogeneous Auto-Encoder

计算机科学 异常检测 过度拟合 人工智能 像素 计算机视觉 卷积神经网络 自编码 医学影像学 模式识别(心理学) 特征(语言学) 编码器 深度学习 人工神经网络 操作系统 语言学 哲学
作者
Shuai Lu,Weihang Zhang,He Zhao,Hanruo Liu,Ningli Wang,Huiqi Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2770-2782 被引量:2
标识
DOI:10.1109/tip.2024.3381435
摘要

Anomaly detection is an important task for medical image analysis, which can alleviate the reliance of supervised methods on large labelled datasets. Most existing methods use a pixel-wise self-reconstruction framework for anomaly detection. However, there are two challenges of these studies: 1) they tend to overfit learning an identity mapping between the input and output, which leads to failure in detecting abnormal samples; 2) the reconstruction considers the pixel-wise differences which may lead to an undesirable result. To mitigate the above problems, we propose a novel heterogeneous Auto-Encoder (Hetero-AE) for medical anomaly detection. Our model utilizes a convolutional neural network (CNN) as the encoder and a hybrid CNN-Transformer network as the decoder. The heterogeneous structure enables the model to learn the intrinsic information of normal data and enlarge the difference on abnormal samples. To fully exploit the effectiveness of Transformer in the hybrid network, a multi-scale sparse Transformer block is proposed to trade off modelling long-range feature dependencies and high computational costs. Moreover, the multi-stage feature comparison is introduced to reduce the noise of pixel-wise comparison. Extensive experiments on four public datasets (i.e., retinal OCT, chest X-ray, brain MRI, and COVID-19 ) verify the effectiveness of our method on different imaging modalities for anomaly detection. Additionally, our method can accurately detect tumors in brain MRI and lesions in retinal OCT with interpretable heatmaps to locate lesion areas, assisting clinicians in diagnosing abnormalities efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙福禄应助牛奶秋刀鱼采纳,获得10
刚刚
@@@发布了新的文献求助10
刚刚
Eusha完成签到,获得积分10
1秒前
吴家辉完成签到,获得积分10
1秒前
zhanwenlin完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
追寻的问玉完成签到 ,获得积分10
3秒前
博修完成签到,获得积分10
5秒前
上官若男应助冷酷严青采纳,获得10
5秒前
辉夜折影完成签到,获得积分10
6秒前
6秒前
6秒前
hayden发布了新的文献求助10
7秒前
8秒前
tao完成签到 ,获得积分10
8秒前
能能发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助huyuan采纳,获得10
9秒前
共享精神应助深时采纳,获得10
9秒前
永康发布了新的文献求助10
10秒前
BenQiu完成签到,获得积分10
11秒前
11秒前
shirley完成签到,获得积分10
11秒前
高贵路灯发布了新的文献求助10
11秒前
11秒前
neao完成签到 ,获得积分10
13秒前
13秒前
孤独寻云完成签到,获得积分10
13秒前
我有一个超能力完成签到 ,获得积分10
14秒前
111111完成签到,获得积分10
14秒前
YWang完成签到,获得积分10
15秒前
子车谷波完成签到,获得积分10
15秒前
15秒前
15秒前
永康完成签到,获得积分10
16秒前
muyi完成签到 ,获得积分10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582