Deep learning-based detection of aphid colonies on plants from a reconstructed Brassica image dataset

蚜虫 人工智能 模式识别(心理学) 卷积神经网络 农业害虫 深度学习 计算机科学 目标检测 跳跃式监视 机器学习 生物 农学 农业科学
作者
Abderraouf Amrani,Ferdous Sohel,Dean Diepeveen,David Murray,M. G. K. Jones
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:205: 107587-107587 被引量:4
标识
DOI:10.1016/j.compag.2022.107587
摘要

Plant pathogenic colony-forming aphids are serious pests of agricultural crops. Most aphid species develop colonies, which are several to many aphids that are functionally organized to extract food from plants. Early and efficient detection of aphid colonies enables the implementation of control measures to reduce crop damage. Aphid colonies exhibit different shapes, sizes, and numbers of individuals, and their distribution makes it hard to detect them correctly. This paper investigates machine learning-based aphid colony detection from imagery. To the best of our knowledge, it is the first study that uses artificial intelligence-based computing algorithms to detect aphid colonies from images. As such, no aphid colony image dataset is currently available publicly. To mitigate this, we have relabelled an existing insect and pest dataset and repurposed it as an aphid colony dataset (AphColDat). For labelling, first, we automatically identify the regions of interest for colonies based on the locations and distributions of aphids. A novel bounding box merging technique is proposed to generate regions potential colony boxes. These colony boxes are a collection of single or overlapping aphid boxes that co-locate together in a colony. Once the dataset is constructed, a convolutional neural network (CNN)-based binary classification algorithm is applied to the images to create AphColDat. This paper evaluates several object detecting deep learning models on the newly developed dataset. The results demonstrate mean average precisions (mAP) of 56.9%, 53.4%, 53.1%, and 48.7% respectively by Faster R-CNN, SSD, YOLOv3, and EfficientNet. In terms of average detection speed (computational time), SSD and EfficientNet are faster than Faster R-CNN and YOLOv3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jacksin发布了新的文献求助10
刚刚
桐桐应助醉熏的如雪采纳,获得10
2秒前
nicewink完成签到,获得积分10
4秒前
HMZ完成签到,获得积分10
6秒前
7秒前
wanci应助lijinyu采纳,获得10
8秒前
melisa发布了新的文献求助10
13秒前
清欢完成签到,获得积分10
18秒前
LoLo完成签到 ,获得积分20
19秒前
8616861发布了新的文献求助10
19秒前
26秒前
Asahi完成签到,获得积分10
28秒前
鱼与树发布了新的文献求助10
29秒前
和尘同光完成签到,获得积分10
31秒前
34秒前
润润润完成签到 ,获得积分10
34秒前
Owen应助melisa采纳,获得10
35秒前
38秒前
39秒前
大胆的夏天完成签到,获得积分10
39秒前
41秒前
丰富的归尘完成签到 ,获得积分10
43秒前
44秒前
不配.应助科研通管家采纳,获得10
46秒前
搜集达人应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
不配.应助科研通管家采纳,获得10
46秒前
Yang完成签到 ,获得积分10
50秒前
生动的芙蓉完成签到,获得积分10
51秒前
陈永伟完成签到,获得积分10
51秒前
JamesPei应助Roy采纳,获得10
52秒前
阿刁完成签到,获得积分10
53秒前
任嘉嘉发布了新的文献求助10
54秒前
哈理老萝卜完成签到 ,获得积分10
55秒前
55秒前
jjy完成签到,获得积分10
56秒前
56秒前
gu完成签到 ,获得积分10
57秒前
WongGingYong完成签到,获得积分10
58秒前
小马哥完成签到,获得积分10
59秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3375204
求助须知:如何正确求助?哪些是违规求助? 2991820
关于积分的说明 8747483
捐赠科研通 2675889
什么是DOI,文献DOI怎么找? 1465859
科研通“疑难数据库(出版商)”最低求助积分说明 677996
邀请新用户注册赠送积分活动 669639