Adaptive Dual-Path Collaborative Learning for PAN and MS Classification

计算机科学 人工智能 多光谱图像 像素 路径(计算) 模式识别(心理学) 数据挖掘 计算机网络
作者
Hao Zhu,Kenan Sun,Licheng Jiao,Xiaotong Li,Fang Liu,Biao Hou,Shuang Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2022.3223921
摘要

Due to the limitation of sensor technology, researchers tend to obtain high-quality image information from panchromatic (PAN) images and multispectral (MS) images with different resolutions. Therefore, the classification of remote sensing images of PAN and MS have become a research hotspot. In this paper, we propose an adaptive dual-path collaborative learning method for PAN and MS classification. In the stage of sample generation and training, we propose an adaptive neighborhood sample grading (ANSG) strategy in the establishing sample stage so that each pixel to be classified can obtain neighborhood information suitable for itself. Further, to simulate biological cognitive mechanisms, we divide the samples into different levels, and design the self-paced progressive loss (SPL), thus allowing the network to do preference training in different stages. The network’s training can quickly reach the optimal of the current stage and the overall convergence is more thorough. In the network structure, we propose a dual-path module (DPM) to effectively alleviate the gradient degradation in the residual path , while ensuring maximum gradient loss information flow between every two layers in the densely connected path . This module can extract more robust features to cope with the complex characteristics of remote-sensing images. Moreover, using the characteristics of the dual path to better fuse the features by the gradual collaborative fusion (GCF) way. The experimental results and theoretical analysis have demonstrated the proposed approach’s effectiveness, feasibility, and robustness. Our model are available at https://github.com/AIpy-nan/DBFI-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
CodeCraft应助迅速凡旋采纳,获得10
2秒前
2秒前
颗粒完成签到,获得积分10
2秒前
ohno耶耶耶完成签到,获得积分10
4秒前
4秒前
Lucas应助故意的雅容采纳,获得10
4秒前
阿尼完成签到 ,获得积分10
5秒前
zz完成签到,获得积分10
5秒前
whatever举报无敌老金刚求助涉嫌违规
5秒前
小孟吖发布了新的文献求助10
5秒前
7秒前
夏夏子发布了新的文献求助10
7秒前
shou85完成签到 ,获得积分20
7秒前
7秒前
飞快的尔云完成签到,获得积分20
7秒前
归尘发布了新的文献求助10
7秒前
10秒前
不懈奋进应助sci采纳,获得30
10秒前
liyk完成签到,获得积分10
10秒前
打打应助maxspecter采纳,获得10
10秒前
科研通AI5应助xm采纳,获得10
10秒前
11秒前
11秒前
12秒前
Szj发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
文章快快来应助wwj采纳,获得10
14秒前
14秒前
米米关注了科研通微信公众号
14秒前
14秒前
三木足球发布了新的文献求助10
15秒前
15秒前
小蘑菇应助jayliu采纳,获得10
15秒前
zho发布了新的文献求助100
17秒前
阿尼发布了新的文献求助10
17秒前
活力的bird发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546424
求助须知:如何正确求助?哪些是违规求助? 3123558
关于积分的说明 9355871
捐赠科研通 2822198
什么是DOI,文献DOI怎么找? 1551271
邀请新用户注册赠送积分活动 723295
科研通“疑难数据库(出版商)”最低求助积分说明 713690