重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Development and validation of an artificial intelligence‐based system for predicting colorectal cancer invasion depth using multi‐modal data

医学 人工智能 结肠镜检查 结直肠癌 情态动词 癌症 内科学 计算机科学 化学 高分子化学
作者
Liwen Yao,Zihua Lu,Genhua Yang,Wei Zhou,Y Xu,Mingwen Guo,Xu Huang,Chunping He,Rui Zhou,Yunchao Deng,Huiling Wu,Boru Chen,Rongrong Gong,Lihui Zhang,Mengjiao Zhang,Wei Gong,Honggang Yu
出处
期刊:Digestive Endoscopy [Wiley]
卷期号:35 (5): 625-635 被引量:16
标识
DOI:10.1111/den.14493
摘要

Accurate endoscopic optical prediction of the depth of cancer invasion is critical for guiding an optimal treatment approach of large sessile colorectal polyps but was hindered by insufficient endoscopists expertise and inter-observer variability. We aimed to construct a clinically applicable artificial intelligence (AI) system for the identification of presence of cancer invasion in large sessile colorectal polyps.A deep learning-based colorectal cancer invasion calculation (CCIC) system was constructed. Multi-modal data including clinical information, white light (WL) and image-enhanced endoscopy (IEE) were included for training. The system was trained using 339 lesions and tested on 198 lesions across three hospitals. Man-machine contest, reader study and video validation were further conducted to evaluate the performance of CCIC.The overall accuracy of CCIC system using image and video validation was 90.4% and 89.7%, respectively. In comparison with 14 endoscopists, the accuracy of CCIC was comparable with expert endoscopists but superior to all the participating senior and junior endoscopists in both image and video validation set. With CCIC augmentation, the average accuracy of junior endoscopists improved significantly from 75.4% to 85.3% (P = 0.002).This deep learning-based CCIC system may play an important role in predicting the depth of cancer invasion in colorectal polyps, thus determining treatment strategies for these large sessile colorectal polyps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乖乖完成签到,获得积分10
刚刚
刚刚
1秒前
哇哦完成签到,获得积分10
1秒前
1秒前
瀚子发布了新的文献求助20
1秒前
小古董发布了新的文献求助10
1秒前
1秒前
彭于晏应助聪明的可愁采纳,获得10
1秒前
落后的寄文完成签到,获得积分10
1秒前
see完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
可爱的函函应助冯珂采纳,获得10
3秒前
3秒前
852应助最最采纳,获得10
3秒前
蒙奇路飞发布了新的文献求助10
3秒前
黄钦清发布了新的文献求助10
5秒前
堪稀完成签到,获得积分10
5秒前
goufufu完成签到,获得积分10
5秒前
5秒前
研友_nVNBVn发布了新的文献求助10
5秒前
李爱国应助诚心青曼采纳,获得10
5秒前
5秒前
龙彦完成签到,获得积分10
5秒前
TT发布了新的文献求助10
6秒前
万能图书馆应助Snoopy采纳,获得10
7秒前
7秒前
hym发布了新的文献求助10
7秒前
发顺丰发布了新的文献求助10
7秒前
weiwei完成签到,获得积分10
7秒前
7秒前
stella完成签到,获得积分10
8秒前
CharlieYue发布了新的文献求助10
8秒前
钟意发布了新的文献求助10
8秒前
Orange应助沉舟采纳,获得10
8秒前
zcx完成签到,获得积分20
9秒前
王泉林发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567