Development and validation of an artificial intelligence‐based system for predicting colorectal cancer invasion depth using multi‐modal data

医学 人工智能 结肠镜检查 结直肠癌 情态动词 癌症 内科学 计算机科学 化学 高分子化学
作者
Liwen Yao,Zihua Lu,Genhua Yang,Wei Zhou,Y Xu,Mingwen Guo,Xu Huang,Chunping He,Rui Zhou,Yunchao Deng,Huiling Wu,Boru Chen,Rongrong Gong,Lihui Zhang,Mengjiao Zhang,Wei Gong,Honggang Yu
出处
期刊:Digestive Endoscopy [Wiley]
卷期号:35 (5): 625-635 被引量:15
标识
DOI:10.1111/den.14493
摘要

Accurate endoscopic optical prediction of the depth of cancer invasion is critical for guiding an optimal treatment approach of large sessile colorectal polyps but was hindered by insufficient endoscopists expertise and inter-observer variability. We aimed to construct a clinically applicable artificial intelligence (AI) system for the identification of presence of cancer invasion in large sessile colorectal polyps.A deep learning-based colorectal cancer invasion calculation (CCIC) system was constructed. Multi-modal data including clinical information, white light (WL) and image-enhanced endoscopy (IEE) were included for training. The system was trained using 339 lesions and tested on 198 lesions across three hospitals. Man-machine contest, reader study and video validation were further conducted to evaluate the performance of CCIC.The overall accuracy of CCIC system using image and video validation was 90.4% and 89.7%, respectively. In comparison with 14 endoscopists, the accuracy of CCIC was comparable with expert endoscopists but superior to all the participating senior and junior endoscopists in both image and video validation set. With CCIC augmentation, the average accuracy of junior endoscopists improved significantly from 75.4% to 85.3% (P = 0.002).This deep learning-based CCIC system may play an important role in predicting the depth of cancer invasion in colorectal polyps, thus determining treatment strategies for these large sessile colorectal polyps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助MY采纳,获得10
刚刚
1秒前
2秒前
Jian发布了新的文献求助10
2秒前
落寞的立果完成签到,获得积分10
2秒前
橘子发布了新的文献求助10
2秒前
焦糖咸鱼发布了新的文献求助10
2秒前
蜚蜚发布了新的文献求助10
3秒前
vogo7完成签到,获得积分10
3秒前
草莓灰灰完成签到,获得积分20
3秒前
3秒前
3秒前
Hypnos完成签到,获得积分10
4秒前
传奇3应助驼鹿队长采纳,获得10
4秒前
搜集达人应助Ccc采纳,获得10
5秒前
嘿嘿嘿发布了新的文献求助10
5秒前
流水应助坦率的匪采纳,获得30
5秒前
6秒前
LLL发布了新的文献求助10
6秒前
虚幻中蓝完成签到,获得积分10
6秒前
Sylvia_J完成签到 ,获得积分10
6秒前
挣钱养刺猬完成签到,获得积分10
6秒前
xu发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
suha发布了新的文献求助10
9秒前
9秒前
clj完成签到 ,获得积分10
10秒前
cj819应助噜噜晓采纳,获得10
10秒前
11秒前
11秒前
小二郎应助明ming到此一游采纳,获得10
11秒前
11秒前
元水云发布了新的文献求助10
12秒前
小蘑菇应助咚咚咚采纳,获得10
12秒前
飞太难发布了新的文献求助10
13秒前
MY发布了新的文献求助10
13秒前
LLL完成签到,获得积分10
13秒前
楊玖日完成签到 ,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798