Development and validation of an artificial intelligence‐based system for predicting colorectal cancer invasion depth using multi‐modal data

医学 人工智能 结肠镜检查 结直肠癌 情态动词 癌症 内科学 计算机科学 化学 高分子化学
作者
Liwen Yao,Zihua Lu,Genhua Yang,Wei Zhou,Y Xu,Mingwen Guo,Xu Huang,Chunping He,Rui Zhou,Yunchao Deng,Huiling Wu,Bo‐Ru Chen,Rongrong Gong,Lihui Zhang,Shouxin Zhang,Wei Gong,Honggang Yu
出处
期刊:Digestive Endoscopy [Wiley]
卷期号:35 (5): 625-635 被引量:11
标识
DOI:10.1111/den.14493
摘要

Accurate endoscopic optical prediction of the depth of cancer invasion is critical for guiding an optimal treatment approach of large sessile colorectal polyps but was hindered by insufficient endoscopists expertise and inter-observer variability. We aimed to construct a clinically applicable artificial intelligence (AI) system for the identification of presence of cancer invasion in large sessile colorectal polyps.A deep learning-based colorectal cancer invasion calculation (CCIC) system was constructed. Multi-modal data including clinical information, white light (WL) and image-enhanced endoscopy (IEE) were included for training. The system was trained using 339 lesions and tested on 198 lesions across three hospitals. Man-machine contest, reader study and video validation were further conducted to evaluate the performance of CCIC.The overall accuracy of CCIC system using image and video validation was 90.4% and 89.7%, respectively. In comparison with 14 endoscopists, the accuracy of CCIC was comparable with expert endoscopists but superior to all the participating senior and junior endoscopists in both image and video validation set. With CCIC augmentation, the average accuracy of junior endoscopists improved significantly from 75.4% to 85.3% (P = 0.002).This deep learning-based CCIC system may play an important role in predicting the depth of cancer invasion in colorectal polyps, thus determining treatment strategies for these large sessile colorectal polyps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的电脑完成签到,获得积分10
1秒前
Luckovo完成签到 ,获得积分10
1秒前
3秒前
积极的忆曼完成签到,获得积分10
4秒前
4秒前
牛人完成签到,获得积分10
4秒前
随影相伴完成签到 ,获得积分10
4秒前
曹中明完成签到,获得积分10
5秒前
落星完成签到,获得积分10
6秒前
一叶知秋发布了新的文献求助30
7秒前
充电宝应助Amy采纳,获得30
10秒前
张瑞雪完成签到 ,获得积分10
11秒前
骄傲慕尼黑完成签到,获得积分10
11秒前
共享精神应助程程采纳,获得10
11秒前
繁荣的柏柳完成签到,获得积分10
12秒前
贾小闲完成签到,获得积分10
12秒前
YKH完成签到,获得积分10
13秒前
西哈哈完成签到,获得积分20
13秒前
多边形完成签到 ,获得积分10
13秒前
jackie完成签到,获得积分10
13秒前
文剑武书生完成签到,获得积分10
13秒前
温暖宛筠完成签到,获得积分10
14秒前
physicalproblem完成签到,获得积分10
14秒前
15秒前
cathy完成签到,获得积分10
17秒前
17秒前
沛蓝完成签到,获得积分10
17秒前
星辰大海应助凶狠的猎豹采纳,获得10
18秒前
刀笔吏完成签到,获得积分10
18秒前
liuliuliu发布了新的文献求助30
19秒前
不舍天真完成签到,获得积分10
20秒前
李爱国应助Soundyxxa采纳,获得10
22秒前
怕黑凤妖完成签到 ,获得积分10
22秒前
caozhi完成签到,获得积分10
23秒前
浮三白完成签到,获得积分10
24秒前
老朱完成签到,获得积分10
25秒前
打打应助cathy采纳,获得10
25秒前
25秒前
yuki完成签到 ,获得积分10
26秒前
majf完成签到,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134060
求助须知:如何正确求助?哪些是违规求助? 2784861
关于积分的说明 7769107
捐赠科研通 2440349
什么是DOI,文献DOI怎么找? 1297368
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792