Development and validation of an artificial intelligence‐based system for predicting colorectal cancer invasion depth using multi‐modal data

医学 人工智能 结肠镜检查 结直肠癌 情态动词 癌症 内科学 计算机科学 化学 高分子化学
作者
Liwen Yao,Zihua Lu,Genhua Yang,Wei Zhou,Y Xu,Mingwen Guo,Xu Huang,Chunping He,Rui Zhou,Yunchao Deng,Huiling Wu,Boru Chen,Rongrong Gong,Lihui Zhang,Mengjiao Zhang,Wei Gong,Honggang Yu
出处
期刊:Digestive Endoscopy [Wiley]
卷期号:35 (5): 625-635 被引量:16
标识
DOI:10.1111/den.14493
摘要

Accurate endoscopic optical prediction of the depth of cancer invasion is critical for guiding an optimal treatment approach of large sessile colorectal polyps but was hindered by insufficient endoscopists expertise and inter-observer variability. We aimed to construct a clinically applicable artificial intelligence (AI) system for the identification of presence of cancer invasion in large sessile colorectal polyps.A deep learning-based colorectal cancer invasion calculation (CCIC) system was constructed. Multi-modal data including clinical information, white light (WL) and image-enhanced endoscopy (IEE) were included for training. The system was trained using 339 lesions and tested on 198 lesions across three hospitals. Man-machine contest, reader study and video validation were further conducted to evaluate the performance of CCIC.The overall accuracy of CCIC system using image and video validation was 90.4% and 89.7%, respectively. In comparison with 14 endoscopists, the accuracy of CCIC was comparable with expert endoscopists but superior to all the participating senior and junior endoscopists in both image and video validation set. With CCIC augmentation, the average accuracy of junior endoscopists improved significantly from 75.4% to 85.3% (P = 0.002).This deep learning-based CCIC system may play an important role in predicting the depth of cancer invasion in colorectal polyps, thus determining treatment strategies for these large sessile colorectal polyps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hey发布了新的文献求助10
刚刚
Merry8558完成签到,获得积分10
1秒前
coc发布了新的文献求助10
2秒前
NexusExplorer应助Ico采纳,获得50
2秒前
量子星尘发布了新的文献求助10
3秒前
科目三应助felinus采纳,获得10
3秒前
庸俗完成签到,获得积分10
3秒前
科研通AI6应助YYYYZ采纳,获得10
4秒前
6秒前
XIAOJU_U完成签到 ,获得积分10
7秒前
热心鱼发布了新的文献求助10
7秒前
CipherSage应助Quhang采纳,获得10
7秒前
机智的天宇完成签到,获得积分10
8秒前
9秒前
沧沧完成签到,获得积分10
9秒前
9秒前
dann完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
吱唔朱完成签到,获得积分20
12秒前
12秒前
小透明发布了新的文献求助150
13秒前
14秒前
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
zbzfp发布了新的文献求助10
15秒前
哈哈哈发布了新的文献求助10
16秒前
coc完成签到,获得积分20
16秒前
兰hua发布了新的文献求助10
16秒前
谢大喵发布了新的文献求助10
16秒前
毅诚菌发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573