Apple orchard production estimation using deep learning strategies: A comparison of tracking-by-detection algorithms

人工智能 跟踪(教育) 计算机科学 果园 卡尔曼滤波器 BitTorrent跟踪器 树(集合论) 计算机视觉 滤波器(信号处理) 目标检测 模式识别(心理学) 算法 数学 眼动 生物 数学分析 园艺 教育学 心理学
作者
Juan Villacrés,Michelle Viscaíno,José Delpiano,Stavros Vougioukas,Fernando Auat Cheein
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107513-107513 被引量:24
标识
DOI:10.1016/j.compag.2022.107513
摘要

The automated detection and counting of fruit in tree canopies is a key component of yield estimation systems, which are indispensable for the precision management of modern orchards. Detection and counting tasks in agricultural environments are not trivial because of challenges such as characteristics of the tree canopies, occlusion caused by leaves and the lighting conditions, among other factors. With the aim of identifying which algorithm is more suitable for yield estimation, we present a comprehensive comparison of tracking-by-detection algorithms, applied to apple counting. The tracking strategies evaluated were Kalman Filter, Kernelized Correlation Filter, Simple Online Real-Time Tracking, Multi Hypothesis Tracking, and Deep Simple Online Real-Time Tracking. The five tracking algorithms were further assessed on two novel databases constructed for this research in Multiple Object Tracking MOT format. After a sensitivity analysis of the trackers, the results show that the most robust approach is the Multiple Hypothesis Tracking, followed by the Deep Simple Online Realtime (DeepSORT), with a MOT accuracy of 97.00% and 93.00%, respectively, when having perfect detection. However, in an application case including a deep learning-based detection stage, the DeepSORT tracker obtains the lowest counting error, which on average for all videos is 20.07% and 31.52% when using YoloV5 and Faster R-CNN as detection strategies. Statistically similar results were obtained using the Kalman Filter with a counting error of 20.5% and 31.9% when detecting fruit with YoloV5 and Faster R-CNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的滑板完成签到,获得积分10
1秒前
科研通AI6应助清浅采纳,获得10
2秒前
2秒前
3秒前
sadd发布了新的文献求助10
3秒前
打打应助Xerxez采纳,获得10
4秒前
伞下铭发布了新的文献求助10
5秒前
领导范儿应助zppp采纳,获得10
5秒前
6秒前
王佳亮完成签到,获得积分10
6秒前
zenzi完成签到,获得积分20
7秒前
小雨完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
1an完成签到,获得积分10
9秒前
Nancy发布了新的文献求助10
9秒前
青青松树枝完成签到,获得积分10
9秒前
瘦瘦发布了新的文献求助20
9秒前
汉堡包应助不医人采纳,获得10
10秒前
小雨发布了新的文献求助10
11秒前
爆米花应助Steven采纳,获得10
11秒前
11秒前
newnew完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
ding应助磐xst采纳,获得10
15秒前
原野完成签到,获得积分10
15秒前
科研通AI6应助Nancy采纳,获得10
15秒前
15秒前
huilin发布了新的文献求助10
15秒前
16秒前
niNe3YUE应助薄荷采纳,获得10
16秒前
16秒前
何木萧完成签到,获得积分10
16秒前
丫丫完成签到,获得积分10
18秒前
Ava应助缥缈傥采纳,获得10
18秒前
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002