Apple orchard production estimation using deep learning strategies: A comparison of tracking-by-detection algorithms

人工智能 跟踪(教育) 计算机科学 果园 卡尔曼滤波器 BitTorrent跟踪器 树(集合论) 计算机视觉 滤波器(信号处理) 目标检测 模式识别(心理学) 算法 数学 眼动 生物 数学分析 园艺 教育学 心理学
作者
Juan Villacrés,Michelle Viscaíno,José Delpiano,Stavros Vougioukas,Fernando Auat Cheein
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107513-107513 被引量:24
标识
DOI:10.1016/j.compag.2022.107513
摘要

The automated detection and counting of fruit in tree canopies is a key component of yield estimation systems, which are indispensable for the precision management of modern orchards. Detection and counting tasks in agricultural environments are not trivial because of challenges such as characteristics of the tree canopies, occlusion caused by leaves and the lighting conditions, among other factors. With the aim of identifying which algorithm is more suitable for yield estimation, we present a comprehensive comparison of tracking-by-detection algorithms, applied to apple counting. The tracking strategies evaluated were Kalman Filter, Kernelized Correlation Filter, Simple Online Real-Time Tracking, Multi Hypothesis Tracking, and Deep Simple Online Real-Time Tracking. The five tracking algorithms were further assessed on two novel databases constructed for this research in Multiple Object Tracking MOT format. After a sensitivity analysis of the trackers, the results show that the most robust approach is the Multiple Hypothesis Tracking, followed by the Deep Simple Online Realtime (DeepSORT), with a MOT accuracy of 97.00% and 93.00%, respectively, when having perfect detection. However, in an application case including a deep learning-based detection stage, the DeepSORT tracker obtains the lowest counting error, which on average for all videos is 20.07% and 31.52% when using YoloV5 and Faster R-CNN as detection strategies. Statistically similar results were obtained using the Kalman Filter with a counting error of 20.5% and 31.9% when detecting fruit with YoloV5 and Faster R-CNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻道图强举报kido求助涉嫌违规
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
梦想成神发布了新的文献求助10
3秒前
殷勤的皮卡丘完成签到,获得积分10
3秒前
长苼完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
JCSY应助酥酥采纳,获得10
5秒前
5秒前
平常的茗茗完成签到,获得积分10
6秒前
呆萌语梦发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
bkagyin应助优秀的枫叶采纳,获得10
9秒前
田様应助宋灵竹采纳,获得10
9秒前
9秒前
10秒前
小魏完成签到,获得积分10
10秒前
宇文风行发布了新的文献求助10
10秒前
10秒前
所所应助梦想成神采纳,获得10
10秒前
危险份子发布了新的文献求助10
10秒前
等待的三问完成签到,获得积分10
11秒前
11秒前
11秒前
hui发布了新的文献求助10
11秒前
安子发布了新的文献求助10
12秒前
12秒前
12秒前
orixero应助肥肥菲采纳,获得10
12秒前
13秒前
李哈哈发布了新的文献求助10
13秒前
义气笑卉发布了新的文献求助20
14秒前
小丁1127应助rachel03采纳,获得30
14秒前
少年应助xiao采纳,获得10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186