Apple orchard production estimation using deep learning strategies: A comparison of tracking-by-detection algorithms

人工智能 跟踪(教育) 计算机科学 果园 卡尔曼滤波器 BitTorrent跟踪器 树(集合论) 计算机视觉 滤波器(信号处理) 目标检测 模式识别(心理学) 算法 数学 眼动 心理学 教育学 生物 数学分析 园艺
作者
Juan Villacrés,Michelle Viscaíno,José Delpiano,Stavros Vougioukas,Fernando Auat Cheein
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107513-107513 被引量:24
标识
DOI:10.1016/j.compag.2022.107513
摘要

The automated detection and counting of fruit in tree canopies is a key component of yield estimation systems, which are indispensable for the precision management of modern orchards. Detection and counting tasks in agricultural environments are not trivial because of challenges such as characteristics of the tree canopies, occlusion caused by leaves and the lighting conditions, among other factors. With the aim of identifying which algorithm is more suitable for yield estimation, we present a comprehensive comparison of tracking-by-detection algorithms, applied to apple counting. The tracking strategies evaluated were Kalman Filter, Kernelized Correlation Filter, Simple Online Real-Time Tracking, Multi Hypothesis Tracking, and Deep Simple Online Real-Time Tracking. The five tracking algorithms were further assessed on two novel databases constructed for this research in Multiple Object Tracking MOT format. After a sensitivity analysis of the trackers, the results show that the most robust approach is the Multiple Hypothesis Tracking, followed by the Deep Simple Online Realtime (DeepSORT), with a MOT accuracy of 97.00% and 93.00%, respectively, when having perfect detection. However, in an application case including a deep learning-based detection stage, the DeepSORT tracker obtains the lowest counting error, which on average for all videos is 20.07% and 31.52% when using YoloV5 and Faster R-CNN as detection strategies. Statistically similar results were obtained using the Kalman Filter with a counting error of 20.5% and 31.9% when detecting fruit with YoloV5 and Faster R-CNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
困困包发布了新的文献求助30
4秒前
冷艳的靳发布了新的文献求助10
5秒前
然12138发布了新的文献求助10
5秒前
6秒前
7秒前
天份z发布了新的文献求助10
8秒前
浮游应助开心采纳,获得10
12秒前
大芳儿发布了新的文献求助10
13秒前
Xjx6519发布了新的文献求助10
13秒前
浮游应助明亮紫易采纳,获得10
13秒前
15秒前
Tcell完成签到,获得积分10
20秒前
胡图图发布了新的文献求助10
20秒前
无极微光应助科研通管家采纳,获得20
21秒前
pluto应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
shhoing应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
21秒前
玄风应助科研通管家采纳,获得10
21秒前
BowieHuang应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
张宇豪应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
22秒前
玄风应助科研通管家采纳,获得10
22秒前
Verity应助科研通管家采纳,获得10
22秒前
厚朴应助开心采纳,获得10
23秒前
大龙哥886应助Xjx6519采纳,获得10
26秒前
在水一方应助zgsjymysmyy采纳,获得30
26秒前
echo发布了新的文献求助10
27秒前
27秒前
zhoumaoyuan发布了新的文献求助10
28秒前
天份z完成签到,获得积分10
28秒前
共享精神应助超越自我4641采纳,获得10
28秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566