Apple orchard production estimation using deep learning strategies: A comparison of tracking-by-detection algorithms

人工智能 跟踪(教育) 计算机科学 果园 卡尔曼滤波器 BitTorrent跟踪器 树(集合论) 计算机视觉 滤波器(信号处理) 目标检测 模式识别(心理学) 算法 数学 眼动 心理学 教育学 生物 数学分析 园艺
作者
Juan Villacrés,Michelle Viscaíno,José Delpiano,Stavros Vougioukas,Fernando Auat Cheein
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107513-107513 被引量:24
标识
DOI:10.1016/j.compag.2022.107513
摘要

The automated detection and counting of fruit in tree canopies is a key component of yield estimation systems, which are indispensable for the precision management of modern orchards. Detection and counting tasks in agricultural environments are not trivial because of challenges such as characteristics of the tree canopies, occlusion caused by leaves and the lighting conditions, among other factors. With the aim of identifying which algorithm is more suitable for yield estimation, we present a comprehensive comparison of tracking-by-detection algorithms, applied to apple counting. The tracking strategies evaluated were Kalman Filter, Kernelized Correlation Filter, Simple Online Real-Time Tracking, Multi Hypothesis Tracking, and Deep Simple Online Real-Time Tracking. The five tracking algorithms were further assessed on two novel databases constructed for this research in Multiple Object Tracking MOT format. After a sensitivity analysis of the trackers, the results show that the most robust approach is the Multiple Hypothesis Tracking, followed by the Deep Simple Online Realtime (DeepSORT), with a MOT accuracy of 97.00% and 93.00%, respectively, when having perfect detection. However, in an application case including a deep learning-based detection stage, the DeepSORT tracker obtains the lowest counting error, which on average for all videos is 20.07% and 31.52% when using YoloV5 and Faster R-CNN as detection strategies. Statistically similar results were obtained using the Kalman Filter with a counting error of 20.5% and 31.9% when detecting fruit with YoloV5 and Faster R-CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文刀发布了新的文献求助10
刚刚
1秒前
1秒前
4秒前
5秒前
谨川完成签到,获得积分10
5秒前
CipherSage应助电催化丁真采纳,获得10
6秒前
SEVEN发布了新的文献求助10
6秒前
田様应助bear101777采纳,获得10
6秒前
南风发布了新的文献求助10
6秒前
鲜于夜白发布了新的文献求助10
7秒前
7秒前
chenhunhun发布了新的文献求助10
7秒前
8秒前
9秒前
顺利完成签到,获得积分10
9秒前
9秒前
七彩琉璃公主完成签到,获得积分10
10秒前
abc发布了新的文献求助10
10秒前
11秒前
ljcznhy完成签到,获得积分10
11秒前
12秒前
holmes发布了新的文献求助10
12秒前
Ava应助呱呱小蛙采纳,获得10
13秒前
小蘑菇应助万灵竹采纳,获得10
14秒前
14秒前
15秒前
谨川发布了新的文献求助10
16秒前
任jie发布了新的文献求助10
16秒前
17秒前
ilugbh发布了新的文献求助10
17秒前
李博士发布了新的文献求助10
20秒前
SEVEN发布了新的文献求助10
21秒前
21秒前
小凉发布了新的文献求助10
22秒前
Rwslpy完成签到 ,获得积分10
23秒前
24秒前
CipherSage应助无敌鱼采纳,获得10
24秒前
25秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129756
求助须知:如何正确求助?哪些是违规求助? 2780520
关于积分的说明 7748718
捐赠科研通 2435880
什么是DOI,文献DOI怎么找? 1294326
科研通“疑难数据库(出版商)”最低求助积分说明 623670
版权声明 600570