Apple orchard production estimation using deep learning strategies: A comparison of tracking-by-detection algorithms

人工智能 跟踪(教育) 计算机科学 果园 卡尔曼滤波器 BitTorrent跟踪器 树(集合论) 计算机视觉 滤波器(信号处理) 目标检测 模式识别(心理学) 算法 数学 眼动 生物 数学分析 园艺 教育学 心理学
作者
Juan Villacrés,Michelle Viscaíno,José Delpiano,Stavros Vougioukas,Fernando Auat Cheein
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:204: 107513-107513 被引量:24
标识
DOI:10.1016/j.compag.2022.107513
摘要

The automated detection and counting of fruit in tree canopies is a key component of yield estimation systems, which are indispensable for the precision management of modern orchards. Detection and counting tasks in agricultural environments are not trivial because of challenges such as characteristics of the tree canopies, occlusion caused by leaves and the lighting conditions, among other factors. With the aim of identifying which algorithm is more suitable for yield estimation, we present a comprehensive comparison of tracking-by-detection algorithms, applied to apple counting. The tracking strategies evaluated were Kalman Filter, Kernelized Correlation Filter, Simple Online Real-Time Tracking, Multi Hypothesis Tracking, and Deep Simple Online Real-Time Tracking. The five tracking algorithms were further assessed on two novel databases constructed for this research in Multiple Object Tracking MOT format. After a sensitivity analysis of the trackers, the results show that the most robust approach is the Multiple Hypothesis Tracking, followed by the Deep Simple Online Realtime (DeepSORT), with a MOT accuracy of 97.00% and 93.00%, respectively, when having perfect detection. However, in an application case including a deep learning-based detection stage, the DeepSORT tracker obtains the lowest counting error, which on average for all videos is 20.07% and 31.52% when using YoloV5 and Faster R-CNN as detection strategies. Statistically similar results were obtained using the Kalman Filter with a counting error of 20.5% and 31.9% when detecting fruit with YoloV5 and Faster R-CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的鸵鸟完成签到 ,获得积分10
刚刚
赘婿应助胡说八道采纳,获得10
刚刚
sunyanghu369发布了新的文献求助10
刚刚
缚大哥发布了新的文献求助10
刚刚
Xin发布了新的文献求助10
刚刚
简单半邪完成签到,获得积分10
1秒前
1秒前
夏末未央完成签到,获得积分10
2秒前
科研通AI5应助王运静采纳,获得10
2秒前
lixian完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
淡定发布了新的文献求助10
4秒前
Nana完成签到 ,获得积分10
4秒前
4秒前
Sunnig盈完成签到,获得积分10
4秒前
纸质超人发布了新的文献求助10
5秒前
杨梦茹完成签到,获得积分10
6秒前
易烊千玺发布了新的文献求助10
7秒前
爱学习的小李完成签到 ,获得积分10
7秒前
Xin完成签到,获得积分10
7秒前
JamesPei应助嘉欣采纳,获得10
7秒前
森木发布了新的文献求助10
7秒前
9秒前
9秒前
彭于彦祖应助摩卡采纳,获得150
9秒前
拉长的鼠标完成签到,获得积分20
9秒前
彭泽林发布了新的文献求助10
9秒前
wanci应助吭哧吭哧采纳,获得10
9秒前
zz完成签到,获得积分10
9秒前
打打应助支珩采纳,获得30
9秒前
GG发布了新的文献求助10
10秒前
科研通AI5应助428采纳,获得10
10秒前
传奇3应助郑森友采纳,获得10
11秒前
科研通AI5应助郑森友采纳,获得10
11秒前
11秒前
111完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371