Exponential Squirrel Search Algorithm-Based Deep Classifier for Intrusion Detection in Cloud Computing with Big Data Assisted Spark Framework

计算机科学 SPARK(编程语言) 云计算 入侵检测系统 自编码 数据挖掘 算法 人工智能 分类器(UML) 深度学习 模式识别(心理学) 操作系统 程序设计语言
作者
Vijayakumar Polepally,D. B. Jagannadha Rao,Parsi Kalpana,Srikanth Prabhu
出处
期刊:Cybernetics and Systems [Informa]
卷期号:55 (2): 331-350 被引量:2
标识
DOI:10.1080/01969722.2022.2112542
摘要

Intrusion detection systems (IDS) are extensively employed for detecting suspicious behaviors in hosts. The ability of distributed IDS solutions makes it viable to combine and handle various kinds of sensors and generate alerts to different hosts positioned in distributed platforms. However, to offer secure and feasible services in a cloud platform is an imperative issue due to the impacts of attacks. This paper devises a novel IDS framework using cloud data to counter the influence of attacks. Here, the spark architecture is employed for discovering the intrusions. The pre-processing is applied to the input data for removing artifacts and noise considering input data. Thereafter, the feature extraction and feature fusion are performed in slave nodes. The feature fusion is carried out with the proposed Exponential Squirrel Search Algorithm (ExpSSA) algorithm. The fused features are considered in a deep-stacked autoencoder (Deep SAE) for performing effective intrusion detection. The proposed ExpSSA is adapted to train Deep SAE for tuning optimum weights. The exponential weighted moving average (EWMA) and squirrel search algorithm (SSA) are combined to create the proposed ExpSSA. The proposed ExpSSA-based Deep SAE offered improved performance compared to other techniques with the highest accuracy, detection rate of 0.846, and minimal FPR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zx完成签到,获得积分10
1秒前
王川完成签到,获得积分10
1秒前
bayes111完成签到,获得积分20
1秒前
深情安青应助霍师傅采纳,获得10
2秒前
西鱼发布了新的文献求助10
2秒前
2秒前
Owen应助羊丢丢啊丢丢采纳,获得10
2秒前
旺旺发布了新的文献求助10
3秒前
wangyaofeng发布了新的文献求助10
3秒前
高子懿发布了新的文献求助10
3秒前
Quinn发布了新的文献求助10
3秒前
3秒前
小鹿完成签到,获得积分10
4秒前
c0uVi1完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
茜茜完成签到,获得积分10
4秒前
苹果从菡完成签到,获得积分10
5秒前
zzz发布了新的文献求助10
5秒前
5秒前
情怀应助默默采纳,获得10
5秒前
西鱼完成签到,获得积分10
7秒前
7秒前
fan完成签到,获得积分10
8秒前
宇与鱼完成签到,获得积分10
8秒前
8秒前
8秒前
月兮2013发布了新的文献求助10
8秒前
Jupiter 1234完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
NexusExplorer应助2010采纳,获得10
9秒前
9秒前
英姑应助研友_LpQ3rn采纳,获得10
9秒前
9秒前
9秒前
9秒前
陈0702_完成签到,获得积分20
10秒前
10秒前
dilili发布了新的文献求助40
12秒前
共享精神应助yangjian采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515