Normalization Approach by a Reference Material to Improve LC–MS-Based Metabolomic Data Comparability of Multibatch Samples

代谢组学 化学 规范化(社会学) 生物标志物发现 可比性 色谱法 接收机工作特性 线性判别分析 数据集 多元统计 统计 蛋白质组学 数学 生物化学 基因 组合数学 社会学 人类学
作者
Yao Yao,Hui Zhang,Lanyin Tu,Tiantian Yu,Baowei Chen,Peng Huang,Yumin Hu,Tiangang Luan
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.analchem.2c04188
摘要

Large cohorts of samples from multiple batches are usually required for global metabolomic studies to characterize the metabolic state of human disease. As such, it is critical to eliminate systematic variation and truly reveal the biologically associated alterations. In this study, we proposed a reference material-based approach (Ref-M) for data correction by liquid chromatography–mass spectrometry and represented by an analysis of multibatch human serum samples. The reference material was generated by mixing serum from healthy donors and distributed to each extraction batch of subject samples. Pooled quality control samples and isotopic internal standards were then applied in each acquisition batch for data quality control. Finally, each metabolite in subject samples was normalized by its counterpart in the reference serum. We demonstrated that Ref-M significantly enhanced the numbers of efficient features and effectively eliminated the batch variation of 522 serum samples of healthy individuals, benign pulmonary nodules, and lung cancer patients. Twenty differential metabolites were identified to distinguish lung cancer from healthy controls in the training set. The discriminant model was validated in an independent data set with an area under the receiver operating characteristics (ROC) curve (AUC) of 0.853. Another 40 serum samples further tested with Ref-M were achieved an AUC of 0.843 by the established model. Our results showed that the reference material-based approach presents the potential to improve the data comparability and precision for biomarker discovery in large-scale metabolomic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想起名字完成签到,获得积分10
1秒前
dddd完成签到,获得积分10
2秒前
zhangxinan完成签到,获得积分10
3秒前
aaronzhu1995完成签到,获得积分10
3秒前
坚强枫完成签到,获得积分10
3秒前
4秒前
科研小菜完成签到,获得积分10
4秒前
my123完成签到,获得积分10
5秒前
怪默完成签到,获得积分10
5秒前
Deathmask完成签到,获得积分10
6秒前
lemon完成签到,获得积分10
6秒前
Leohp完成签到,获得积分10
8秒前
8秒前
灯箱发布了新的文献求助10
9秒前
雪花完成签到 ,获得积分10
9秒前
DezhaoWang完成签到,获得积分10
11秒前
cyy发布了新的文献求助10
11秒前
魏俏红完成签到,获得积分10
12秒前
隐形的皮卡丘完成签到 ,获得积分10
12秒前
Grace完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
拾一完成签到,获得积分10
13秒前
灯箱完成签到,获得积分10
14秒前
Karvs完成签到,获得积分10
14秒前
Aiden完成签到,获得积分10
14秒前
Raymond完成签到,获得积分10
15秒前
葵花籽完成签到,获得积分10
16秒前
18秒前
红衣落花倾城完成签到,获得积分20
18秒前
wang22完成签到,获得积分10
18秒前
嘟嘟完成签到,获得积分10
18秒前
wangyaofeng完成签到,获得积分10
19秒前
大妙妙完成签到 ,获得积分10
19秒前
xczhu完成签到,获得积分0
21秒前
烤鸭完成签到 ,获得积分10
21秒前
DONNYTIO完成签到,获得积分10
21秒前
纯情的远山完成签到,获得积分10
22秒前
22秒前
zhonghbush发布了新的文献求助10
23秒前
Qiao完成签到 ,获得积分10
23秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584888
求助须知:如何正确求助?哪些是违规求助? 4668769
关于积分的说明 14771947
捐赠科研通 4616207
什么是DOI,文献DOI怎么找? 2530267
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590