Normalization Approach by a Reference Material to Improve LC–MS-Based Metabolomic Data Comparability of Multibatch Samples

代谢组学 化学 规范化(社会学) 生物标志物发现 可比性 色谱法 接收机工作特性 线性判别分析 数据集 多元统计 统计 蛋白质组学 数学 生物化学 基因 组合数学 社会学 人类学
作者
Yao Yao,Hui Zhang,Lanyin Tu,Tiantian Yu,Baowei Chen,Peng Huang,Yumin Hu,Tiangang Luan
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.analchem.2c04188
摘要

Large cohorts of samples from multiple batches are usually required for global metabolomic studies to characterize the metabolic state of human disease. As such, it is critical to eliminate systematic variation and truly reveal the biologically associated alterations. In this study, we proposed a reference material-based approach (Ref-M) for data correction by liquid chromatography–mass spectrometry and represented by an analysis of multibatch human serum samples. The reference material was generated by mixing serum from healthy donors and distributed to each extraction batch of subject samples. Pooled quality control samples and isotopic internal standards were then applied in each acquisition batch for data quality control. Finally, each metabolite in subject samples was normalized by its counterpart in the reference serum. We demonstrated that Ref-M significantly enhanced the numbers of efficient features and effectively eliminated the batch variation of 522 serum samples of healthy individuals, benign pulmonary nodules, and lung cancer patients. Twenty differential metabolites were identified to distinguish lung cancer from healthy controls in the training set. The discriminant model was validated in an independent data set with an area under the receiver operating characteristics (ROC) curve (AUC) of 0.853. Another 40 serum samples further tested with Ref-M were achieved an AUC of 0.843 by the established model. Our results showed that the reference material-based approach presents the potential to improve the data comparability and precision for biomarker discovery in large-scale metabolomic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kuga完成签到,获得积分10
2秒前
Wxr123发布了新的文献求助10
2秒前
李珅玥完成签到,获得积分10
3秒前
Roy发布了新的文献求助10
4秒前
几两发布了新的文献求助10
4秒前
jerry完成签到,获得积分10
5秒前
樱桃汽水完成签到 ,获得积分10
5秒前
7秒前
8秒前
淡定可乐完成签到,获得积分10
9秒前
overmind发布了新的文献求助20
9秒前
10秒前
11秒前
12秒前
狂妄冰戟发布了新的文献求助10
12秒前
13秒前
14秒前
所所应助奶昔采纳,获得10
15秒前
英吉利25发布了新的文献求助10
16秒前
LVMIN完成签到,获得积分10
17秒前
浅忆发布了新的文献求助10
17秒前
18秒前
18秒前
20秒前
bkagyin应助overmind采纳,获得10
20秒前
wadihjasifh完成签到,获得积分10
20秒前
赘婿应助sunqian采纳,获得10
24秒前
魏头头完成签到 ,获得积分10
24秒前
火桑花发布了新的文献求助10
25秒前
Akim应助cmx采纳,获得10
26秒前
WC241002292完成签到,获得积分10
27秒前
颜倾完成签到,获得积分10
28秒前
29秒前
xkm完成签到,获得积分10
30秒前
hang完成签到,获得积分10
31秒前
江沉晚吟完成签到 ,获得积分10
31秒前
Hello应助狂妄冰戟采纳,获得10
31秒前
32秒前
浮游应助星辰坠于海采纳,获得10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460885
求助须知:如何正确求助?哪些是违规求助? 4565924
关于积分的说明 14302173
捐赠科研通 4491506
什么是DOI,文献DOI怎么找? 2460346
邀请新用户注册赠送积分活动 1449679
关于科研通互助平台的介绍 1425492