已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Normalization Approach by a Reference Material to Improve LC–MS-Based Metabolomic Data Comparability of Multibatch Samples

代谢组学 化学 规范化(社会学) 生物标志物发现 可比性 色谱法 接收机工作特性 线性判别分析 数据集 多元统计 统计 蛋白质组学 数学 生物化学 基因 组合数学 社会学 人类学
作者
Yao Yao,Hui Zhang,Lanyin Tu,Tiantian Yu,Baowei Chen,Peng Huang,Yumin Hu,Tiangang Luan
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.analchem.2c04188
摘要

Large cohorts of samples from multiple batches are usually required for global metabolomic studies to characterize the metabolic state of human disease. As such, it is critical to eliminate systematic variation and truly reveal the biologically associated alterations. In this study, we proposed a reference material-based approach (Ref-M) for data correction by liquid chromatography–mass spectrometry and represented by an analysis of multibatch human serum samples. The reference material was generated by mixing serum from healthy donors and distributed to each extraction batch of subject samples. Pooled quality control samples and isotopic internal standards were then applied in each acquisition batch for data quality control. Finally, each metabolite in subject samples was normalized by its counterpart in the reference serum. We demonstrated that Ref-M significantly enhanced the numbers of efficient features and effectively eliminated the batch variation of 522 serum samples of healthy individuals, benign pulmonary nodules, and lung cancer patients. Twenty differential metabolites were identified to distinguish lung cancer from healthy controls in the training set. The discriminant model was validated in an independent data set with an area under the receiver operating characteristics (ROC) curve (AUC) of 0.853. Another 40 serum samples further tested with Ref-M were achieved an AUC of 0.843 by the established model. Our results showed that the reference material-based approach presents the potential to improve the data comparability and precision for biomarker discovery in large-scale metabolomic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡罗特完成签到,获得积分20
1秒前
上官若男应助kk采纳,获得10
1秒前
XIXIXI发布了新的文献求助10
1秒前
hugo发布了新的文献求助10
3秒前
5秒前
6秒前
不周完成签到,获得积分20
7秒前
徐逊发布了新的文献求助10
8秒前
阿洁发布了新的文献求助10
9秒前
10秒前
汉堡包应助糊糊采纳,获得10
12秒前
hugo完成签到,获得积分20
13秒前
13秒前
15秒前
英姑应助王槿采纳,获得10
15秒前
阿洁完成签到,获得积分10
15秒前
xhj666发布了新的文献求助10
16秒前
17秒前
17秒前
君寻完成签到 ,获得积分10
18秒前
kk发布了新的文献求助10
19秒前
彭于晏应助科研通管家采纳,获得30
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
20秒前
sci发布了新的文献求助10
20秒前
田様应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
木兆完成签到 ,获得积分10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
20秒前
Ava应助神海采纳,获得10
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396