亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Normalization Approach by a Reference Material to Improve LC–MS-Based Metabolomic Data Comparability of Multibatch Samples

代谢组学 化学 规范化(社会学) 生物标志物发现 可比性 色谱法 接收机工作特性 线性判别分析 数据集 多元统计 统计 蛋白质组学 数学 生物化学 基因 组合数学 社会学 人类学
作者
Yao Yao,Hui Zhang,Lanyin Tu,Tiantian Yu,Baowei Chen,Peng Huang,Yumin Hu,Tiangang Luan
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.analchem.2c04188
摘要

Large cohorts of samples from multiple batches are usually required for global metabolomic studies to characterize the metabolic state of human disease. As such, it is critical to eliminate systematic variation and truly reveal the biologically associated alterations. In this study, we proposed a reference material-based approach (Ref-M) for data correction by liquid chromatography–mass spectrometry and represented by an analysis of multibatch human serum samples. The reference material was generated by mixing serum from healthy donors and distributed to each extraction batch of subject samples. Pooled quality control samples and isotopic internal standards were then applied in each acquisition batch for data quality control. Finally, each metabolite in subject samples was normalized by its counterpart in the reference serum. We demonstrated that Ref-M significantly enhanced the numbers of efficient features and effectively eliminated the batch variation of 522 serum samples of healthy individuals, benign pulmonary nodules, and lung cancer patients. Twenty differential metabolites were identified to distinguish lung cancer from healthy controls in the training set. The discriminant model was validated in an independent data set with an area under the receiver operating characteristics (ROC) curve (AUC) of 0.853. Another 40 serum samples further tested with Ref-M were achieved an AUC of 0.843 by the established model. Our results showed that the reference material-based approach presents the potential to improve the data comparability and precision for biomarker discovery in large-scale metabolomic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
假茂茂发布了新的文献求助20
刚刚
1秒前
3秒前
5秒前
6秒前
6秒前
美满一曲发布了新的文献求助10
7秒前
9秒前
落花生发布了新的文献求助10
11秒前
luster完成签到 ,获得积分10
20秒前
22秒前
假茂茂完成签到,获得积分10
25秒前
ivy发布了新的文献求助10
29秒前
Garnieta完成签到,获得积分10
30秒前
踏实绮露完成签到 ,获得积分10
31秒前
吴邪发布了新的文献求助10
38秒前
Lucas应助nnn7采纳,获得10
42秒前
swimming完成签到 ,获得积分10
43秒前
诸葛高澜完成签到,获得积分10
48秒前
51秒前
54秒前
56秒前
56秒前
57秒前
57秒前
嘴角微微仰起笑应助wise111采纳,获得10
58秒前
1分钟前
1分钟前
Huayan发布了新的文献求助10
1分钟前
check003完成签到,获得积分10
1分钟前
panzervor发布了新的文献求助10
1分钟前
繁星完成签到 ,获得积分10
1分钟前
淡淡土豆应助huangsile采纳,获得10
1分钟前
科研通AI6应助酷炫半青采纳,获得10
1分钟前
Hello应助遇见馅儿饼采纳,获得10
1分钟前
panzervor完成签到,获得积分10
1分钟前
天天快乐应助愉快的依霜采纳,获得10
1分钟前
1分钟前
JamesPei应助遇见馅儿饼采纳,获得10
1分钟前
小荷完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509398
求助须知:如何正确求助?哪些是违规求助? 4604318
关于积分的说明 14489605
捐赠科研通 4539084
什么是DOI,文献DOI怎么找? 2487285
邀请新用户注册赠送积分活动 1469726
关于科研通互助平台的介绍 1441944