Normalization Approach by a Reference Material to Improve LC–MS-Based Metabolomic Data Comparability of Multibatch Samples

代谢组学 化学 规范化(社会学) 生物标志物发现 可比性 色谱法 接收机工作特性 线性判别分析 数据集 多元统计 统计 蛋白质组学 数学 生物化学 基因 组合数学 社会学 人类学
作者
Yao Yao,Hui Zhang,Lanyin Tu,Tiantian Yu,Baowei Chen,Peng Huang,Yumin Hu,Tiangang Luan
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.analchem.2c04188
摘要

Large cohorts of samples from multiple batches are usually required for global metabolomic studies to characterize the metabolic state of human disease. As such, it is critical to eliminate systematic variation and truly reveal the biologically associated alterations. In this study, we proposed a reference material-based approach (Ref-M) for data correction by liquid chromatography–mass spectrometry and represented by an analysis of multibatch human serum samples. The reference material was generated by mixing serum from healthy donors and distributed to each extraction batch of subject samples. Pooled quality control samples and isotopic internal standards were then applied in each acquisition batch for data quality control. Finally, each metabolite in subject samples was normalized by its counterpart in the reference serum. We demonstrated that Ref-M significantly enhanced the numbers of efficient features and effectively eliminated the batch variation of 522 serum samples of healthy individuals, benign pulmonary nodules, and lung cancer patients. Twenty differential metabolites were identified to distinguish lung cancer from healthy controls in the training set. The discriminant model was validated in an independent data set with an area under the receiver operating characteristics (ROC) curve (AUC) of 0.853. Another 40 serum samples further tested with Ref-M were achieved an AUC of 0.843 by the established model. Our results showed that the reference material-based approach presents the potential to improve the data comparability and precision for biomarker discovery in large-scale metabolomic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助Square采纳,获得20
刚刚
1秒前
mini完成签到,获得积分20
1秒前
yue发布了新的文献求助10
1秒前
GTAG完成签到,获得积分10
1秒前
求知完成签到,获得积分10
1秒前
从容不弱完成签到,获得积分10
1秒前
Innogen发布了新的文献求助10
2秒前
shuoliu完成签到 ,获得积分10
2秒前
浮游应助haha采纳,获得10
2秒前
shuenghei完成签到,获得积分10
3秒前
3秒前
3秒前
H_W发布了新的文献求助10
4秒前
4秒前
Pu Chunyi发布了新的文献求助10
4秒前
机灵眼神完成签到,获得积分20
4秒前
Su完成签到,获得积分10
4秒前
Matthew_G完成签到,获得积分10
5秒前
温梦花雨发布了新的文献求助10
5秒前
Lucas应助呼啦啦采纳,获得10
5秒前
tan90完成签到,获得积分10
6秒前
慕青应助美满的凝丝采纳,获得10
6秒前
7秒前
天天快乐应助满意西牛采纳,获得10
7秒前
8秒前
8秒前
紫津完成签到,获得积分10
8秒前
小桓栀禾发布了新的文献求助10
9秒前
哆啦A梦完成签到,获得积分20
9秒前
9秒前
坚定的诗双完成签到,获得积分10
9秒前
9秒前
9秒前
沙漠大雕完成签到,获得积分10
9秒前
比比茶娃完成签到,获得积分10
9秒前
王伊辰完成签到,获得积分10
9秒前
英俊的铭应助L610采纳,获得100
9秒前
10秒前
liars完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563