Normalization Approach by a Reference Material to Improve LC–MS-Based Metabolomic Data Comparability of Multibatch Samples

代谢组学 化学 规范化(社会学) 生物标志物发现 可比性 色谱法 接收机工作特性 线性判别分析 数据集 多元统计 统计 蛋白质组学 数学 生物化学 组合数学 社会学 人类学 基因
作者
Yao Yao,Hui Zhang,Lanyin Tu,Tiantian Yu,Baowei Chen,Peng Huang,Yumin Hu,Tiangang Luan
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.analchem.2c04188
摘要

Large cohorts of samples from multiple batches are usually required for global metabolomic studies to characterize the metabolic state of human disease. As such, it is critical to eliminate systematic variation and truly reveal the biologically associated alterations. In this study, we proposed a reference material-based approach (Ref-M) for data correction by liquid chromatography–mass spectrometry and represented by an analysis of multibatch human serum samples. The reference material was generated by mixing serum from healthy donors and distributed to each extraction batch of subject samples. Pooled quality control samples and isotopic internal standards were then applied in each acquisition batch for data quality control. Finally, each metabolite in subject samples was normalized by its counterpart in the reference serum. We demonstrated that Ref-M significantly enhanced the numbers of efficient features and effectively eliminated the batch variation of 522 serum samples of healthy individuals, benign pulmonary nodules, and lung cancer patients. Twenty differential metabolites were identified to distinguish lung cancer from healthy controls in the training set. The discriminant model was validated in an independent data set with an area under the receiver operating characteristics (ROC) curve (AUC) of 0.853. Another 40 serum samples further tested with Ref-M were achieved an AUC of 0.843 by the established model. Our results showed that the reference material-based approach presents the potential to improve the data comparability and precision for biomarker discovery in large-scale metabolomic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿辉完成签到,获得积分10
2秒前
朱颜关注了科研通微信公众号
2秒前
6秒前
Singularity应助大白采纳,获得10
8秒前
完美绮琴完成签到,获得积分10
10秒前
安详初蓝发布了新的文献求助10
10秒前
不配.应助AMG先生采纳,获得10
11秒前
cdgbdfbsfdvsd发布了新的文献求助10
11秒前
上官若男应助失眠的蓝采纳,获得10
11秒前
乾乾完成签到,获得积分10
14秒前
子车茗应助Mottri采纳,获得10
14秒前
冬猫完成签到,获得积分10
14秒前
Severus完成签到 ,获得积分10
15秒前
慧敏完成签到,获得积分10
15秒前
16秒前
情怀应助cdgbdfbsfdvsd采纳,获得10
17秒前
满意非笑完成签到,获得积分20
17秒前
淡淡的丹彤完成签到 ,获得积分10
17秒前
17秒前
20秒前
Hello应助种花家的狗狗采纳,获得10
20秒前
小刘鸭发布了新的文献求助10
21秒前
完美绮琴发布了新的文献求助10
22秒前
22秒前
迷路的城完成签到,获得积分10
22秒前
23秒前
24秒前
25秒前
桐桐应助11采纳,获得10
25秒前
深情安青应助牛阳光采纳,获得10
25秒前
xiaoshanban完成签到,获得积分10
25秒前
甜美小蕾发布了新的文献求助10
28秒前
FashionBoy应助nil采纳,获得10
28秒前
高歌猛进完成签到,获得积分10
29秒前
ming发布了新的文献求助10
29秒前
Orange应助科研通管家采纳,获得10
29秒前
Orange应助科研通管家采纳,获得10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136300
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7781050
捐赠科研通 2443321
什么是DOI,文献DOI怎么找? 1299108
科研通“疑难数据库(出版商)”最低求助积分说明 625345
版权声明 600922