重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Normalization Approach by a Reference Material to Improve LC–MS-Based Metabolomic Data Comparability of Multibatch Samples

代谢组学 化学 规范化(社会学) 生物标志物发现 可比性 色谱法 接收机工作特性 线性判别分析 数据集 多元统计 统计 蛋白质组学 数学 生物化学 基因 组合数学 社会学 人类学
作者
Yao Yao,Hui Zhang,Lanyin Tu,Tiantian Yu,Baowei Chen,Peng Huang,Yumin Hu,Tiangang Luan
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.analchem.2c04188
摘要

Large cohorts of samples from multiple batches are usually required for global metabolomic studies to characterize the metabolic state of human disease. As such, it is critical to eliminate systematic variation and truly reveal the biologically associated alterations. In this study, we proposed a reference material-based approach (Ref-M) for data correction by liquid chromatography–mass spectrometry and represented by an analysis of multibatch human serum samples. The reference material was generated by mixing serum from healthy donors and distributed to each extraction batch of subject samples. Pooled quality control samples and isotopic internal standards were then applied in each acquisition batch for data quality control. Finally, each metabolite in subject samples was normalized by its counterpart in the reference serum. We demonstrated that Ref-M significantly enhanced the numbers of efficient features and effectively eliminated the batch variation of 522 serum samples of healthy individuals, benign pulmonary nodules, and lung cancer patients. Twenty differential metabolites were identified to distinguish lung cancer from healthy controls in the training set. The discriminant model was validated in an independent data set with an area under the receiver operating characteristics (ROC) curve (AUC) of 0.853. Another 40 serum samples further tested with Ref-M were achieved an AUC of 0.843 by the established model. Our results showed that the reference material-based approach presents the potential to improve the data comparability and precision for biomarker discovery in large-scale metabolomic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kmy发布了新的文献求助10
刚刚
1234发布了新的文献求助10
1秒前
1秒前
潇湘妃子59完成签到,获得积分10
2秒前
发财总完成签到,获得积分20
2秒前
Boy_h发布了新的文献求助10
2秒前
Jebel发布了新的文献求助10
2秒前
kerity完成签到,获得积分10
2秒前
研友_ZlxK6Z发布了新的文献求助10
4秒前
4秒前
英俊的铭应助奋斗向南采纳,获得10
4秒前
llee2005完成签到,获得积分10
4秒前
完美世界应助xxk采纳,获得10
4秒前
4秒前
xinlinwang发布了新的文献求助10
4秒前
avalanche应助ZXD1989采纳,获得50
4秒前
橘子完成签到 ,获得积分20
5秒前
5秒前
5秒前
春水梨发布了新的文献求助10
5秒前
wanci应助王威采纳,获得10
6秒前
6秒前
香蕉觅云应助bojenny采纳,获得10
6秒前
6秒前
6秒前
吴彦祖应助xiaojie采纳,获得10
6秒前
堪稀发布了新的文献求助10
7秒前
式微发布了新的文献求助10
7秒前
chenji给chenji的求助进行了留言
7秒前
111222完成签到,获得积分10
7秒前
Akim应助cccc采纳,获得10
7秒前
7秒前
丘比特应助randomname采纳,获得10
7秒前
同仁来啦完成签到,获得积分10
7秒前
8秒前
8秒前
李健应助马伊采纳,获得10
8秒前
狮子沟核聚变骡子完成签到 ,获得积分10
8秒前
努力的蜗牛完成签到,获得积分10
8秒前
kaiee发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567