Normalization Approach by a Reference Material to Improve LC–MS-Based Metabolomic Data Comparability of Multibatch Samples

代谢组学 化学 规范化(社会学) 生物标志物发现 可比性 色谱法 接收机工作特性 线性判别分析 数据集 多元统计 统计 蛋白质组学 数学 生物化学 组合数学 社会学 人类学 基因
作者
Yao Yao,Hui Zhang,Lanyin Tu,Tiantian Yu,Baowei Chen,Peng Huang,Yumin Hu,Tiangang Luan
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.analchem.2c04188
摘要

Large cohorts of samples from multiple batches are usually required for global metabolomic studies to characterize the metabolic state of human disease. As such, it is critical to eliminate systematic variation and truly reveal the biologically associated alterations. In this study, we proposed a reference material-based approach (Ref-M) for data correction by liquid chromatography–mass spectrometry and represented by an analysis of multibatch human serum samples. The reference material was generated by mixing serum from healthy donors and distributed to each extraction batch of subject samples. Pooled quality control samples and isotopic internal standards were then applied in each acquisition batch for data quality control. Finally, each metabolite in subject samples was normalized by its counterpart in the reference serum. We demonstrated that Ref-M significantly enhanced the numbers of efficient features and effectively eliminated the batch variation of 522 serum samples of healthy individuals, benign pulmonary nodules, and lung cancer patients. Twenty differential metabolites were identified to distinguish lung cancer from healthy controls in the training set. The discriminant model was validated in an independent data set with an area under the receiver operating characteristics (ROC) curve (AUC) of 0.853. Another 40 serum samples further tested with Ref-M were achieved an AUC of 0.843 by the established model. Our results showed that the reference material-based approach presents the potential to improve the data comparability and precision for biomarker discovery in large-scale metabolomic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助zz采纳,获得10
1秒前
XS_QI完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
hope完成签到,获得积分10
3秒前
CodeCraft应助王鑫采纳,获得10
4秒前
infe完成签到,获得积分10
4秒前
5秒前
7秒前
Ava应助乙烯采纳,获得30
7秒前
8秒前
8秒前
8秒前
yuan1226完成签到 ,获得积分10
8秒前
8秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
灰灰喵完成签到 ,获得积分10
14秒前
ycg发布了新的文献求助10
14秒前
Ahan发布了新的文献求助10
14秒前
公冶长发布了新的文献求助10
15秒前
情怀应助赖账的坦克采纳,获得10
18秒前
18秒前
大力沛萍发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助50
21秒前
苹果紊完成签到,获得积分10
21秒前
22秒前
22秒前
Xinxxx应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
Lu_ckilly完成签到 ,获得积分10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
一寒完成签到 ,获得积分10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919581
求助须知:如何正确求助?哪些是违规求助? 4191579
关于积分的说明 13017920
捐赠科研通 3961771
什么是DOI,文献DOI怎么找? 2171864
邀请新用户注册赠送积分活动 1189776
关于科研通互助平台的介绍 1098444