化学
杂原子
催化作用
分子
析氧
电催化剂
密度泛函理论
共价键
反应性(心理学)
钴
组合化学
光化学
无机化学
有机化学
计算化学
电化学
物理化学
电极
替代医学
病理
医学
戒指(化学)
作者
Liming Cao,Chang-Guo Hu,Haihong Li,Hui-Bin Huang,Liwen Ding,Jia Zhang,Jun‐Xi Wu,Zi‐Yi Du,Chun‐Ting He,Xiao‐Ming Chen
摘要
Remolding the reactivity of metal active sites is critical to facilitate renewable electricity-powered water electrolysis. Doping heteroatoms, such as Se, into a metal crystal lattice has been considered an effective approach, yet usually suffers from loss of functional heteroatoms during harsh electrocatalytic conditions, thus leading to the gradual inactivation of the catalysts. Here, we report a new heteroatom-containing molecule-enhanced strategy toward sustainable oxygen evolution improvement. An organoselenium ligand, bis(3,5-dimethyl-1H-pyrazol-4-yl)selenide containing robust C–Se–C covalent bonds equipped in the precatalyst of ultrathin metal–organic nanosheets Co-SeMON, is revealed to significantly enhance the catalytic mass activity of the cobalt site by 25 times, as well as extend the catalyst operation time in alkaline conditions by 1 or 2 orders of magnitude compared with these reported metal selenides. A combination of various in situ/ex situ spectroscopic techniques, ab initio molecular dynamics, and density functional theory calculations unveiled the organoselenium intensified mechanism, in which the nonclassical bonding of Se to O-containing intermediates endows adsorption-energy regulation beyond the conventional scaling relationship. Our results showcase the great potential of molecule-enhanced catalysts for highly efficient and economical water oxidation.
科研通智能强力驱动
Strongly Powered by AbleSci AI