超级电容器
纳米笼
纳米棒
材料科学
电容
化学工程
异质结
电化学
氢氧化物
纳米技术
电极
储能
光电子学
化学
催化作用
物理
工程类
物理化学
功率(物理)
量子力学
生物化学
作者
Qiong Bi,Xuanying Hu,Kai Tao
标识
DOI:10.1002/chem.202203264
摘要
Layered double hydroxide (LDH) is widely explored in supercapacitors on account of its high capacity, adjustable composition and easy synthesis process. Unfortunately, solitary LDH still has great limitations as an electrode material due to its shortcomings, such as poor conductivity and easy agglomeration. Herein, nanoflakes assembled NiCo-LDH hollow nanocages derived from a metal-organic framework (MOF) precursor are strung by CuO nanorods formed from etching and oxidation of copper foam (CF), forming hierarchical CuO@NiCo-LDH heterostructures. The as-synthesized CuO@NiCo-LDH/CF shows a large capacitance (5607 mF cm-2 at 1 mA cm-2 ), superior rate performance (88.3 % retention at 10 mA cm-2 ) and impressive cycling durability (93.1 % capacitance is retained after 5000 cycles), which is significantly superior to control CuO/CF, CuO@ZIF-67/CF, NiCo-LDH/CF and Cu(OH)2 @NiCo-LDH/CF electrodes. Besides, an asymmetrical supercapacitor consists of CuO@NiCo-LDH/CF and activated carbon displays a maximum energy density of 47.3 Wh kg-1 , and its capacitance only declines by 6.8 % after 10000 cycles, demonstrating remarkable cycling durability. The advantages of highly conductive and robust CuO nanorods, MOF-derived hollow structure and the core-shell heterostructure contribute to the outstanding electrochemical performance. This synthesis strategy can be extended to design various core-shell heterostructures adopted in versatile electrochemical energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI