Patterns of Multimorbidity in Middle-Aged and Older Adults: An Analysis of the UK Biobank Data

医学 哮喘 共病 多发病率 慢性阻塞性肺病 心肌梗塞 心绞痛 糖尿病 生命银行 心力衰竭 疾病 内科学 生物 遗传学 内分泌学
作者
Dawit Zemedikun,Laura J. Gray,Kamlesh Khunti,Melanie J. Davies,Nafeesa Dhalwani
出处
期刊:Mayo Clinic Proceedings [Elsevier]
卷期号:93 (7): 857-866 被引量:194
标识
DOI:10.1016/j.mayocp.2018.02.012
摘要

To assess the prevalence, disease clusters, and patterns of multimorbidity using a novel 2-stage approach in middle-aged and older adults from the United Kingdom.Data on 36 chronic conditions from 502,643 participants aged 40 to 69 years with baseline measurements between March 13, 2006, and October 1, 2010, from the UK Biobank were extracted. We combined cluster analysis and association rule mining to assess patterns of multimorbidity overall and by age, sex, and ethnicity. A maximum of 3 clusters and 30 disease patterns were mined. Comparisons were made using lift as the main measure of association.Ninety-five thousand seven hundred-ten participants (19%) had 2 or more chronic conditions. The first cluster included only myocardial infarction and angina (lift=13.3), indicating that the likelihood of co-occurrence of these conditions is 13 times higher than in isolation. The second cluster consisted of 26 conditions, including cardiovascular, musculoskeletal, respiratory, and neurodegenerative diseases. The strongest association was found between heart failure and atrial fibrillation (lift=23.6). Diabetes was at the center of this cluster with strong associations with heart failure, chronic kidney disease, liver failure, and stroke (lift>2). The third cluster contained 8 highly prevalent conditions, including cancer, hypertension, asthma, and depression, and the strongest association was observed between anxiety and depression (lift=5.0).Conditions such as diabetes, hypertension, and asthma are the epicenter of disease clusters for multimorbidity. A more integrative multidisciplinary approach focusing on better management and prevention of these conditions may help prevent other conditions in the clusters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
阔达千萍完成签到,获得积分10
刚刚
欣慰从云完成签到,获得积分20
刚刚
小蘑菇应助大胆妙竹采纳,获得10
刚刚
czz完成签到,获得积分10
1秒前
zqyzqy完成签到,获得积分10
1秒前
LJY发布了新的文献求助10
1秒前
胡一凡发布了新的文献求助10
2秒前
cc完成签到,获得积分10
2秒前
传奇3应助zkyyy采纳,获得10
2秒前
ynchaoren完成签到,获得积分10
2秒前
LIGHT发布了新的文献求助10
2秒前
犹豫勇完成签到,获得积分10
3秒前
Hello应助peaches采纳,获得10
3秒前
3秒前
文艺寄灵发布了新的文献求助10
3秒前
货哈货哈完成签到,获得积分10
3秒前
聪慧的凝海完成签到 ,获得积分0
4秒前
桃紫完成签到,获得积分10
5秒前
ynchaoren发布了新的文献求助10
5秒前
6秒前
潇洒的平松完成签到,获得积分10
6秒前
7秒前
7秒前
LIGHT完成签到,获得积分10
7秒前
8秒前
NexusExplorer应助常泽洋122采纳,获得70
8秒前
耶斯发布了新的文献求助10
9秒前
Lin发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
pcg发布了新的文献求助10
11秒前
11秒前
Darlin发布了新的文献求助10
11秒前
zhaomr完成签到,获得积分10
12秒前
sinlar发布了新的文献求助10
12秒前
无花果应助肉卷采纳,获得10
12秒前
12秒前
peaches完成签到,获得积分10
13秒前
mm完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708665
求助须知:如何正确求助?哪些是违规求助? 5189265
关于积分的说明 15254544
捐赠科研通 4861584
什么是DOI,文献DOI怎么找? 2609540
邀请新用户注册赠送积分活动 1560064
关于科研通互助平台的介绍 1517810