Patterns of Multimorbidity in Middle-Aged and Older Adults: An Analysis of the UK Biobank Data

医学 哮喘 共病 多发病率 慢性阻塞性肺病 心肌梗塞 心绞痛 糖尿病 生命银行 心力衰竭 疾病 内科学 遗传学 生物 内分泌学
作者
Dawit Zemedikun,Laura J. Gray,Kamlesh Khunti,Melanie J. Davies,Nafeesa Dhalwani
出处
期刊:Mayo Clinic Proceedings [Elsevier]
卷期号:93 (7): 857-866 被引量:136
标识
DOI:10.1016/j.mayocp.2018.02.012
摘要

To assess the prevalence, disease clusters, and patterns of multimorbidity using a novel 2-stage approach in middle-aged and older adults from the United Kingdom.Data on 36 chronic conditions from 502,643 participants aged 40 to 69 years with baseline measurements between March 13, 2006, and October 1, 2010, from the UK Biobank were extracted. We combined cluster analysis and association rule mining to assess patterns of multimorbidity overall and by age, sex, and ethnicity. A maximum of 3 clusters and 30 disease patterns were mined. Comparisons were made using lift as the main measure of association.Ninety-five thousand seven hundred-ten participants (19%) had 2 or more chronic conditions. The first cluster included only myocardial infarction and angina (lift=13.3), indicating that the likelihood of co-occurrence of these conditions is 13 times higher than in isolation. The second cluster consisted of 26 conditions, including cardiovascular, musculoskeletal, respiratory, and neurodegenerative diseases. The strongest association was found between heart failure and atrial fibrillation (lift=23.6). Diabetes was at the center of this cluster with strong associations with heart failure, chronic kidney disease, liver failure, and stroke (lift>2). The third cluster contained 8 highly prevalent conditions, including cancer, hypertension, asthma, and depression, and the strongest association was observed between anxiety and depression (lift=5.0).Conditions such as diabetes, hypertension, and asthma are the epicenter of disease clusters for multimorbidity. A more integrative multidisciplinary approach focusing on better management and prevention of these conditions may help prevent other conditions in the clusters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柳七发布了新的文献求助10
1秒前
迟大猫应助111123123123采纳,获得10
1秒前
香蕉觅云应助子俞采纳,获得10
1秒前
玛卡巴卡完成签到,获得积分10
2秒前
Grayball应助科研小白采纳,获得10
2秒前
阳光完成签到,获得积分10
2秒前
duan完成签到,获得积分10
2秒前
7777777发布了新的文献求助10
2秒前
朴素篮球完成签到,获得积分10
3秒前
清辉月凝完成签到,获得积分10
4秒前
Barry完成签到,获得积分10
4秒前
枫叶完成签到 ,获得积分10
4秒前
英姑应助桶桶要好好学习采纳,获得10
4秒前
5秒前
不辞完成签到,获得积分10
5秒前
ry发布了新的文献求助10
5秒前
song完成签到,获得积分10
5秒前
明亮无颜完成签到,获得积分10
5秒前
6秒前
6秒前
小慈爱鸡完成签到 ,获得积分10
6秒前
6秒前
英俊的铭应助麻麻采纳,获得10
6秒前
97b1完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
羊羊羊发布了新的文献求助30
8秒前
9秒前
9秒前
再沉默完成签到,获得积分10
10秒前
10秒前
10秒前
明亮无颜发布了新的文献求助20
11秒前
11秒前
谁还没有个生活完成签到,获得积分10
11秒前
Feng发布了新的文献求助10
11秒前
zzz发布了新的文献求助10
11秒前
MailkMonk发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678