Image-and-Skeleton-Based Parameterized Approach to Real-Time Identification of Construction Workers’ Unsafe Behaviors

参数化复杂度 鉴定(生物学) 人工智能 计算机科学 计算机视觉 骨架(计算机编程) 模式识别(心理学) 算法 程序设计语言 植物 生物
作者
Hongling Guo,Heng Li,Qinghua Ding,Martin Skitmore
出处
期刊:Journal of Construction Engineering and Management-asce 卷期号:144 (6) 被引量:32
标识
DOI:10.1061/(asce)co.1943-7862.0001497
摘要

Workers’ unsafe behaviors are one of the main causes for construction accidents. To fully understand the causes to unsafe behaviors on site will benefit their prevention, thus reducing construction accidents. The accurate and timely identification of site workers' unsafe behaviors can aid in the analysis of the causes to unsafe behaviors and prevention of construction accidents. However, the traditional methods (e.g. site observation) of behavior data collection on site is neither efficient nor comprehensive. This paper develops a skeleton-based real-time identification method by combining image-based technologies, construction safety knowledge and ergonomic theory. The proposed method recognizes unsafe behaviors by simplifying dynamic motions into static postures, which can be described by a few parameters. Three basic modules are involved: an unsafe behavior database, real-time data collection module and behavior judgement module. A laboratory test demonstrated the feasibility, efficiency and accuracy of the method. The method has the potential to improve construction safety management by providing comprehensive data for the systematic identification of the causes to workers' unsafe behaviors, such as inappropriate management methods, measures or decisions, personal characteristics, work space and time, etc., as well as warning workers identified as behaving unsafely, if necessary. Thus, this paper contributes to practice and the body of knowledge of construction safety management, as well as research and practice in image-based behavior recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
领导范儿应助cappuccino采纳,获得10
3秒前
阿晴完成签到 ,获得积分10
4秒前
鲤鱼鸽子应助浑续采纳,获得10
4秒前
共享精神应助江江采纳,获得10
5秒前
yolo发布了新的文献求助10
5秒前
啦啦啦完成签到,获得积分10
6秒前
zzq发布了新的文献求助10
7秒前
zihanwang发布了新的文献求助30
8秒前
铂铑钯钌完成签到,获得积分10
8秒前
8秒前
9秒前
bkagyin应助缥缈的芷卉采纳,获得10
11秒前
huiyuan完成签到,获得积分10
12秒前
x5kyi完成签到,获得积分10
12秒前
12秒前
顺心电话发布了新的文献求助10
18秒前
哒哒哒完成签到,获得积分10
18秒前
坦率的书竹完成签到,获得积分10
19秒前
19秒前
20秒前
慕青应助p二采纳,获得10
20秒前
YanZhe完成签到,获得积分10
21秒前
21秒前
顺利坤完成签到,获得积分10
21秒前
Malcolm发布了新的文献求助10
22秒前
慕青应助萌仔防守采纳,获得10
22秒前
23秒前
江j发布了新的文献求助10
24秒前
24秒前
刘大宝发布了新的文献求助10
24秒前
伶俐海瑶关注了科研通微信公众号
25秒前
小蘑菇应助啊懂采纳,获得10
26秒前
26秒前
yolo完成签到,获得积分20
26秒前
Jasper应助Aurora采纳,获得10
27秒前
wan发布了新的文献求助10
28秒前
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149519
求助须知:如何正确求助?哪些是违规求助? 2800571
关于积分的说明 7840676
捐赠科研通 2458112
什么是DOI,文献DOI怎么找? 1308279
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706