Image-and-Skeleton-Based Parameterized Approach to Real-Time Identification of Construction Workers’ Unsafe Behaviors

参数化复杂度 鉴定(生物学) 人工智能 计算机科学 计算机视觉 骨架(计算机编程) 模式识别(心理学) 算法 程序设计语言 植物 生物
作者
Hongling Guo,Heng Li,Qinghua Ding,Martin Skitmore
出处
期刊:Journal of Construction Engineering and Management-asce 卷期号:144 (6) 被引量:32
标识
DOI:10.1061/(asce)co.1943-7862.0001497
摘要

Workers’ unsafe behaviors are one of the main causes for construction accidents. To fully understand the causes to unsafe behaviors on site will benefit their prevention, thus reducing construction accidents. The accurate and timely identification of site workers' unsafe behaviors can aid in the analysis of the causes to unsafe behaviors and prevention of construction accidents. However, the traditional methods (e.g. site observation) of behavior data collection on site is neither efficient nor comprehensive. This paper develops a skeleton-based real-time identification method by combining image-based technologies, construction safety knowledge and ergonomic theory. The proposed method recognizes unsafe behaviors by simplifying dynamic motions into static postures, which can be described by a few parameters. Three basic modules are involved: an unsafe behavior database, real-time data collection module and behavior judgement module. A laboratory test demonstrated the feasibility, efficiency and accuracy of the method. The method has the potential to improve construction safety management by providing comprehensive data for the systematic identification of the causes to workers' unsafe behaviors, such as inappropriate management methods, measures or decisions, personal characteristics, work space and time, etc., as well as warning workers identified as behaving unsafely, if necessary. Thus, this paper contributes to practice and the body of knowledge of construction safety management, as well as research and practice in image-based behavior recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
李华完成签到,获得积分10
刚刚
Debrolie发布了新的文献求助10
刚刚
ultraviolet完成签到,获得积分20
1秒前
一只橙子完成签到,获得积分10
1秒前
Treasure完成签到,获得积分10
1秒前
2秒前
老鱼娜娜发布了新的文献求助10
2秒前
青衣完成签到,获得积分10
2秒前
2秒前
2秒前
小宝发布了新的文献求助10
3秒前
1498626960完成签到,获得积分20
3秒前
3秒前
4秒前
竹外桃花发布了新的文献求助10
4秒前
zjq发布了新的文献求助10
4秒前
吴彦祖完成签到,获得积分10
4秒前
顾涵山发布了新的文献求助20
4秒前
72完成签到,获得积分10
4秒前
晓湫发布了新的文献求助10
5秒前
YYYYYL完成签到,获得积分10
5秒前
小卢发布了新的文献求助10
7秒前
张嘉伟发布了新的文献求助10
7秒前
天真的大象完成签到,获得积分10
7秒前
李华发布了新的文献求助10
7秒前
9秒前
汉堡包应助72采纳,获得10
9秒前
9秒前
啾咪完成签到,获得积分20
10秒前
Jiaxing完成签到,获得积分10
11秒前
11秒前
zxs关闭了zxs文献求助
11秒前
ultraviolet发布了新的文献求助10
12秒前
忆夕发布了新的文献求助10
13秒前
英俊的铭应助心落失采纳,获得10
13秒前
徐徐发布了新的文献求助10
13秒前
14秒前
江宜完成签到 ,获得积分10
14秒前
Jiaxing发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139