Criticality Distinguishes the Ensemble of Biological Regulatory Networks

临界性 生物网络 计算机科学 布尔模型 节点(物理) GSM演进的增强数据速率 自组织临界性 理论计算机科学 相互依存的网络 统计物理学 拓扑(电路) 复杂网络 数学 人工智能 物理 离散数学 核物理学 万维网 组合数学 量子力学
作者
Bryan C. Daniels,Hyunju Kim,Douglas Moore,Siyu Zhou,Harrison B. Smith,Bradley Karas,Stuart Kauffman,Sara Imari Walker
出处
期刊:Physical Review Letters [American Physical Society]
卷期号:121 (13) 被引量:112
标识
DOI:10.1103/physrevlett.121.138102
摘要

The hypothesis that many living systems should exhibit near-critical behavior is well motivated theoretically, and an increasing number of cases have been demonstrated empirically. However, a systematic analysis across biological networks, which would enable identification of the network properties that drive criticality, has not yet been realized. Here, we provide a first comprehensive survey of criticality across a diverse sample of biological networks, leveraging a publicly available database of 67 Boolean models of regulatory circuits. We find all 67 networks to be near critical. By comparing to ensembles of random networks with similar topological and logical properties, we show that criticality in biological networks is not predictable solely from macroscale properties such as mean degree $⟨K⟩$ and mean bias in the logic functions $⟨p⟩$, as previously emphasized in theories of random Boolean networks. Instead, the ensemble of real biological circuits is jointly constrained by the local causal structure and logic of each node. In this way, biological regulatory networks are more distinguished from random networks by their criticality than by other macroscale network properties such as degree distribution, edge density, or fraction of activating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI2S应助shelemi采纳,获得10
4秒前
Alice应助shelemi采纳,获得10
4秒前
丘比特应助shelemi采纳,获得10
4秒前
酷波er应助shelemi采纳,获得10
4秒前
深情安青应助shelemi采纳,获得10
4秒前
bkagyin应助shelemi采纳,获得10
4秒前
张潇赫关注了科研通微信公众号
5秒前
如意的以冬完成签到,获得积分10
7秒前
彭于晏应助zzd12318采纳,获得10
11秒前
13秒前
懒得起名完成签到,获得积分10
13秒前
张潇赫发布了新的文献求助30
16秒前
寻123完成签到,获得积分10
19秒前
汉堡包应助单纯的云朵采纳,获得10
20秒前
22秒前
SciGPT应助lee采纳,获得10
22秒前
馋馋完成签到,获得积分10
23秒前
shibbit完成签到,获得积分10
26秒前
ki67完成签到,获得积分20
26秒前
跳跃的惮完成签到,获得积分10
31秒前
32秒前
ygr应助lalala采纳,获得20
35秒前
35秒前
Rainbow完成签到,获得积分10
36秒前
36秒前
klay777发布了新的文献求助10
36秒前
香蕉觅云应助ki67采纳,获得30
37秒前
谷歌发布了新的文献求助10
37秒前
38秒前
cuber完成签到 ,获得积分10
38秒前
在水一方应助babao采纳,获得10
38秒前
kjwu发布了新的文献求助10
40秒前
端庄的煎蛋完成签到,获得积分10
41秒前
星星轨迹发布了新的文献求助10
42秒前
44秒前
44秒前
英姑应助xiaofulan采纳,获得10
44秒前
Lucas应助谷歌采纳,获得10
44秒前
卡奇Mikey完成签到,获得积分10
46秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3383449
求助须知:如何正确求助?哪些是违规求助? 2997723
关于积分的说明 8776111
捐赠科研通 2683301
什么是DOI,文献DOI怎么找? 1469586
科研通“疑难数据库(出版商)”最低求助积分说明 679461
邀请新用户注册赠送积分活动 671744