A Methodology for the Detection of Nitrogen Deficiency in Corn Fields Using High-Resolution RGB Imagery

计算机视觉 人工智能 图像分辨率 RGB颜色模型 分辨率(逻辑) 氮气 计算机科学 遥感 工程类 地理 化学 有机化学
作者
Dimitris Zermas,H. James Nelson,Panagiotis Stanitsas,Vassilios Morellas,D. J. Mulla,Nikos Papanikolopoulos
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 1879-1891 被引量:35
标识
DOI:10.1109/tase.2020.3022868
摘要

A major component of an efficient farming strategy is the precise detection and characterization of plant deficiencies followed by the proper deployment of fertilizers. Through the thoughtful utilization of modern computer vision techniques, it is possible to achieve positive financial and environmental results for these tasks. This work introduces an automation framework that attempts to address the three main drawbacks of existing approaches: 1) lack of generality (methods are tuned for specific data sets); 2) difficulty to apply in variable field conditions; and 3) lack of tool sophistication that limits their applicability. The cultivation of corn lies in the core of the American and global economy with 81.7 million acres harvested only in the USA for the year 2018. The ubiquity of its cultivation makes it an ideal candidate to highlight the large economic benefits from even a small improvement in nutrient deficiency detection. The proposed methodology utilizes drone collected images to detect nitrogen (N) deficiencies in maize fields and assess their severity using low-cost RGB sensors. The proposed methodology is twofold. A low complexity recommendation scheme identifies candidate plants exhibiting N deficiency and, with minimal interaction, assists the annotator in the creation of a training data set that is then used to train an object detection deep neural network. Results on data from experimental fields support the merits of the proposed methodology with mean average precision for the detection of N-deficient leaves reaching 82.3%. Note to Practitioners —The motivation behind this article is the problem of inefficient fertilizer application in corn fields throughout the cultivation season. Current widely spread techniques to counter plant malnutrition suggest the application of excessive amounts of nitrogen fertilizer prior to seeding or the uniform application during the plant growth. These practices result in financial losses and have severe environmental consequences, e.g., the dead zone in the Gulf of Mexico. We propose an automation framework that automatically detects corn nitrogen deficiencies in the field during the plants' growth, and to achieve our goal, we employ low-cost robotic platforms and RGB sensors. The framework that we developed is able to detect the characteristic pattern of nitrogen deficiency on corn leaves and provide an estimation of the in-field spatial variability of the deficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wise111发布了新的文献求助10
1秒前
汉堡包应助晴朗采纳,获得10
2秒前
xiaoqi发布了新的文献求助10
3秒前
执着绿草发布了新的文献求助10
6秒前
jixiaoran完成签到,获得积分10
6秒前
7秒前
笑点低关注了科研通微信公众号
8秒前
8秒前
阿坤完成签到 ,获得积分10
10秒前
蓝天应助容若采纳,获得10
10秒前
充电宝应助leez采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助30
12秒前
13秒前
小蘑菇应助刘言采纳,获得10
15秒前
15秒前
搞怪山晴发布了新的文献求助10
15秒前
17秒前
JamesPei应助直率的问筠采纳,获得10
18秒前
朻安完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
星辰大海应助黑YA采纳,获得10
20秒前
21秒前
chenhouhan发布了新的文献求助20
21秒前
22秒前
22秒前
leez发布了新的文献求助10
23秒前
哎呦你干嘛完成签到,获得积分20
23秒前
Su发布了新的文献求助10
24秒前
pluto应助独特的绮山采纳,获得10
24秒前
wanci应助星星采纳,获得10
25秒前
25秒前
cetomacrogol完成签到,获得积分10
25秒前
26秒前
感动的小懒虫完成签到,获得积分20
26秒前
26秒前
哈哈哈完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729696
求助须知:如何正确求助?哪些是违规求助? 5320101
关于积分的说明 15317350
捐赠科研通 4876657
什么是DOI,文献DOI怎么找? 2619509
邀请新用户注册赠送积分活动 1569008
关于科研通互助平台的介绍 1525595