A Methodology for the Detection of Nitrogen Deficiency in Corn Fields Using High-Resolution RGB Imagery

计算机视觉 人工智能 图像分辨率 RGB颜色模型 分辨率(逻辑) 氮气 计算机科学 遥感 工程类 地理 化学 有机化学
作者
Dimitris Zermas,H. James Nelson,Panagiotis Stanitsas,Vassilios Morellas,D. J. Mulla,Nikos Papanikolopoulos
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 1879-1891 被引量:35
标识
DOI:10.1109/tase.2020.3022868
摘要

A major component of an efficient farming strategy is the precise detection and characterization of plant deficiencies followed by the proper deployment of fertilizers. Through the thoughtful utilization of modern computer vision techniques, it is possible to achieve positive financial and environmental results for these tasks. This work introduces an automation framework that attempts to address the three main drawbacks of existing approaches: 1) lack of generality (methods are tuned for specific data sets); 2) difficulty to apply in variable field conditions; and 3) lack of tool sophistication that limits their applicability. The cultivation of corn lies in the core of the American and global economy with 81.7 million acres harvested only in the USA for the year 2018. The ubiquity of its cultivation makes it an ideal candidate to highlight the large economic benefits from even a small improvement in nutrient deficiency detection. The proposed methodology utilizes drone collected images to detect nitrogen (N) deficiencies in maize fields and assess their severity using low-cost RGB sensors. The proposed methodology is twofold. A low complexity recommendation scheme identifies candidate plants exhibiting N deficiency and, with minimal interaction, assists the annotator in the creation of a training data set that is then used to train an object detection deep neural network. Results on data from experimental fields support the merits of the proposed methodology with mean average precision for the detection of N-deficient leaves reaching 82.3%. Note to Practitioners —The motivation behind this article is the problem of inefficient fertilizer application in corn fields throughout the cultivation season. Current widely spread techniques to counter plant malnutrition suggest the application of excessive amounts of nitrogen fertilizer prior to seeding or the uniform application during the plant growth. These practices result in financial losses and have severe environmental consequences, e.g., the dead zone in the Gulf of Mexico. We propose an automation framework that automatically detects corn nitrogen deficiencies in the field during the plants' growth, and to achieve our goal, we employ low-cost robotic platforms and RGB sensors. The framework that we developed is able to detect the characteristic pattern of nitrogen deficiency on corn leaves and provide an estimation of the in-field spatial variability of the deficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美梦成真完成签到,获得积分10
1秒前
Gakay完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
szj完成签到,获得积分0
3秒前
旦皋完成签到,获得积分10
3秒前
赘婿应助花壳在逃野猪采纳,获得10
4秒前
卷卷完成签到,获得积分10
6秒前
JSY完成签到 ,获得积分20
6秒前
xyh完成签到,获得积分10
7秒前
小曾应助Florencia采纳,获得10
8秒前
神外王001完成签到 ,获得积分10
8秒前
13秒前
你是谁完成签到,获得积分10
14秒前
majf完成签到,获得积分10
15秒前
linhanwenzhou完成签到,获得积分10
15秒前
JSY关注了科研通微信公众号
15秒前
853225598完成签到,获得积分10
15秒前
798完成签到,获得积分10
16秒前
善学以致用应助董怼怼采纳,获得10
16秒前
妍儿完成签到,获得积分20
17秒前
隐形曼青应助高大的水壶采纳,获得10
17秒前
马哥二弟无敌完成签到 ,获得积分10
18秒前
19秒前
Florencia完成签到,获得积分10
19秒前
务实颜完成签到 ,获得积分10
19秒前
19秒前
amberzyc应助小远采纳,获得10
20秒前
20秒前
21秒前
21秒前
22秒前
22秒前
Rondab应助小猪采纳,获得30
22秒前
DLDL完成签到,获得积分10
22秒前
23秒前
沧海云完成签到 ,获得积分10
23秒前
发嗲的迎天完成签到 ,获得积分10
24秒前
hahaha发布了新的文献求助10
25秒前
小马甲应助zx0914采纳,获得10
25秒前
阳光保温杯完成签到 ,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029