Degradation of spiramycin by thermally activated peroxydisulfate: Kinetics study, oxidation products and acute toxicity

降级(电信) 过硫酸盐 亚硝酸盐 反应速率常数 毒性
作者
Gang Wang,Peng Wang,Huiling Liu,Jing Wang,Xiaohu Dai,Yanjun Xin
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:408: 127255-127255 被引量:13
标识
DOI:10.1016/j.cej.2020.127255
摘要

Abstract In recent years, antibiotic residues are frequently detected worldwide that has posed a serious threat to drinking water and increased the risk of bacterial resistance. Sulfate radical (SO4•−)-based advanced oxidation has been regarded as an effective technology for refractory organic pollutants treatment. In this study, the degradation kinetics and mechanism of spiramycin (SPM) under thermally activated peroxydisulfate (PDS) oxidation process in aqueous solution were investigated for the first time. The results indicated that the degradation rate of SPM could be expressed as the kinetic rate equation -d[SPM]/dt=(2.96 × 10−2 mM0 min−1)[SPM]0[SPM]1 within limited experimental conditions utilized here (i.e., 50 °C, pH 7, SPM 0.01–0.05 mM, and K2S2O8 1.0–2.72 mM). The apparent activation energy of 83.27 kJ·mol−1 was calculated by Arrhenius equation. The SPM degradation rate decreased with the increase of pH value. The SO4•− and hydroxyl radical (•OH) were proved to be the dominant reactive species, but the contribution of SO4•− on the SPM oxidation gradually decreased with the increase of pH value. The presence of humic acid (HA) and inorganic anions negatively affected the SPM degradation. To investigate the possible reaction pathways of SPM under thermally activated PDS system, HPLC/ESI-QqQMS was employed to identify the intermediate products. In addition, the acute toxicity evaluated by Vibrio fischeri showed that the oxidation byproducts of SPM were not antibacterial. In summary, this study confirmed that the thermally activated PDS technology could be a promising, efficient, and environmental-friendly approach for removing SPM in aqueous solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy完成签到 ,获得积分10
刚刚
小可完成签到 ,获得积分10
1秒前
斯文败类应助shanjianjie采纳,获得20
1秒前
笋蒸鱼发布了新的文献求助10
1秒前
1321完成签到,获得积分10
1秒前
huahua完成签到,获得积分10
1秒前
66应助马佳凯采纳,获得10
4秒前
林溪完成签到,获得积分10
4秒前
Amber应助CTX采纳,获得10
4秒前
lan完成签到 ,获得积分10
4秒前
共享精神应助Elaine采纳,获得10
6秒前
6秒前
安静一曲完成签到 ,获得积分10
6秒前
7秒前
完美世界应助嘎嘎顺利采纳,获得10
7秒前
崔靥完成签到,获得积分10
7秒前
8秒前
阿敏关注了科研通微信公众号
8秒前
一只绒可可完成签到,获得积分10
8秒前
CBY完成签到,获得积分10
8秒前
8秒前
QYPANG完成签到,获得积分10
9秒前
子时月完成签到,获得积分10
10秒前
脑洞疼应助xlx采纳,获得10
10秒前
jym完成签到,获得积分10
10秒前
10秒前
田様应助笑点低蜜蜂采纳,获得10
10秒前
今后应助乐观的一一采纳,获得10
11秒前
开朗向真完成签到,获得积分10
11秒前
11秒前
奋斗映寒发布了新的文献求助10
11秒前
梓榆发布了新的文献求助10
11秒前
帅气的沧海完成签到 ,获得积分10
11秒前
12秒前
FashionBoy应助包容的幻梅采纳,获得10
12秒前
12秒前
qaq完成签到,获得积分10
12秒前
12秒前
voyager完成签到,获得积分10
12秒前
勇敢肥猫发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740