Computer aided diagnosis of thyroid nodules based on the devised small-datasets multi-view ensemble learning

人工智能 计算机科学 甲状腺结节 分类器(UML) 深度学习 Boosting(机器学习) 集成学习 模式识别(心理学) 机器学习 甲状腺 医学 内科学
作者
Yifei Chen,Dandan Li,Xin Zhang,Jing Jin,Yi Shen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:67: 101819-101819 被引量:52
标识
DOI:10.1016/j.media.2020.101819
摘要

With the development of deep learning, its application in diagnosis of benign and malignant thyroid nodules has been widely concerned. However, it is difficult to obtain medical images, resulting in insufficient number of data, which contradicts the large amount of data required for acquiring effective deep learning diagnostic models. A multi-view ensemble learning based on voting mechanism is proposed herein to boost the performance of the models trained by small-dataset thyroid nodule ultrasound images. The method integrates three kinds of diagnosis results which are obtained from 3-view dataset which is composed of thyroid nodule ultrasound images, medical features extracted based on U-Net output and useful features selected by mRMR from the statistical features and texture features. To obtain preliminary diagnosis results, the images are utilized for training GoogleNet. For improving the results, supplementary methods were proposed based on the medical features and the selected features. To analyze the contribution of these features and acquire two groups of diagnosis results, the designed Xgboost classifier is utilized for obtaining two groups of features respectively. Subsequently, the boosting final results are obtained through majority voting mechanism. Furthermore, the proposed method is utilized to diagnose sequence images (the images extracted by frame from videos) to solve the poor results caused by slight differences. Finally, better final results are obtained for both of the normal dataset and the sequence dataset (consisting of sequence images). Compared with the accuracies obtained by only training deep learning models with small datasets, the diagnostic accuracies of the above two datasets are improved to 92.11% and 92.54% respectively by utilizing the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜沛文发布了新的文献求助10
2秒前
健脊护柱完成签到 ,获得积分10
3秒前
张小度ever完成签到 ,获得积分10
5秒前
爆米花发布了新的文献求助200
7秒前
颜沛文完成签到,获得积分10
8秒前
花花猪1989完成签到 ,获得积分10
11秒前
一三二五七完成签到 ,获得积分0
12秒前
HY完成签到,获得积分10
13秒前
荔枝完成签到 ,获得积分10
14秒前
sunnyqqz完成签到,获得积分10
23秒前
耍酷的指甲油完成签到,获得积分10
32秒前
杨一完成签到 ,获得积分10
33秒前
万能图书馆应助热潮采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
37秒前
隐形曼青应助科研通管家采纳,获得10
37秒前
完美世界应助科研通管家采纳,获得10
37秒前
36456657应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
37秒前
英俊的铭应助科研通管家采纳,获得50
37秒前
研友_VZG7GZ应助科研通管家采纳,获得10
37秒前
37秒前
36456657应助科研通管家采纳,获得10
37秒前
Jasper应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
和平使命应助科研通管家采纳,获得10
37秒前
guo完成签到,获得积分0
38秒前
不甜完成签到 ,获得积分10
41秒前
无为完成签到,获得积分10
41秒前
42秒前
陌上尘开完成签到 ,获得积分10
45秒前
一味愚完成签到,获得积分10
46秒前
行萱完成签到 ,获得积分10
46秒前
47秒前
热潮发布了新的文献求助10
47秒前
Jeason完成签到 ,获得积分10
48秒前
愉快若剑发布了新的文献求助30
52秒前
离枝完成签到 ,获得积分10
53秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671358
求助须知:如何正确求助?哪些是违规求助? 3228175
关于积分的说明 9778776
捐赠科研通 2938469
什么是DOI,文献DOI怎么找? 1610028
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736020