Overview of Gene Regulatory Network Inference Based on Differential Equation Models

颂歌 基因调控网络 常微分方程 微分方程 泛微分方程 精确微分方程 伯努利微分方程 随机微分方程 Riccati方程 推论 应用数学 计算机科学 数学 积分因子 微分代数方程 数学分析 生物 基因 人工智能 生物化学 基因表达
作者
Bin Yang,Yuehui Chen
出处
期刊:Current Protein & Peptide Science [Bentham Science]
卷期号:21 (11): 1054-1059 被引量:8
标识
DOI:10.2174/1389203721666200213103350
摘要

: Reconstruction of gene regulatory networks (GRN) plays an important role in understanding the complexity, functionality and pathways of biological systems, which could support the design of new drugs for diseases. Because differential equation models are flexible androbust, these models have been utilized to identify biochemical reactions and gene regulatory networks. This paper investigates the differential equation models for reverse engineering gene regulatory networks. We introduce three kinds of differential equation models, including ordinary differential equation (ODE), time-delayed differential equation (TDDE) and stochastic differential equation (SDE). ODE models include linear ODE, nonlinear ODE and S-system model. We also discuss the evolutionary algorithms, which are utilized to search the optimal structures and parameters of differential equation models. This investigation could provide a comprehensive understanding of differential equation models, and lead to the discovery of novel differential equation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助Yaseen采纳,获得10
刚刚
刮风这天完成签到,获得积分10
2秒前
2秒前
2秒前
oo发布了新的文献求助10
2秒前
3秒前
明朗发布了新的文献求助10
4秒前
4秒前
Junyi发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
Owen应助虚心飞鸟采纳,获得50
5秒前
酷波er应助nicolight采纳,获得10
5秒前
6秒前
村村发布了新的文献求助10
6秒前
大方嵩发布了新的文献求助10
8秒前
yr应助andrele采纳,获得30
8秒前
9秒前
cherry发布了新的文献求助10
9秒前
小王发布了新的文献求助10
9秒前
9秒前
QIEZI关注了科研通微信公众号
11秒前
CipherSage应助炮炮公主采纳,获得10
11秒前
lhj完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
小z发布了新的文献求助10
17秒前
小天草水母完成签到 ,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
村村完成签到,获得积分10
18秒前
18秒前
科研通AI6.1应助小王采纳,获得10
19秒前
sht1发布了新的文献求助10
20秒前
21秒前
22秒前
希望天下0贩的0应助肉卷采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771499
求助须知:如何正确求助?哪些是违规求助? 5591993
关于积分的说明 15427668
捐赠科研通 4904815
什么是DOI,文献DOI怎么找? 2639018
邀请新用户注册赠送积分活动 1586798
关于科研通互助平台的介绍 1541797