Amplification Curve Analysis: Data-Driven Multiplexing Using Real-Time Digital PCR

数字聚合酶链反应 多路复用 化学 熔化曲线分析 枚举 生物系统 计算机科学 实时聚合酶链反应 数学 聚合酶链反应 基因 生物化学 电信 生物 组合数学
作者
Ahmad Moniri,Luca Miglietta,Kenny Malpartida-Cardenas,Ivana Pennisi,Miguel Cacho-Soblechero,Nicolas Moser,Alison Holmes,Pantelis Georgiou,Jesús Rodríguez-Manzano
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (19): 13134-13143 被引量:44
标识
DOI:10.1021/acs.analchem.0c02253
摘要

Information about the kinetics of PCR reactions is encoded in the amplification curve. However, in digital PCR (dPCR), this information is typically neglected by collapsing each amplification curve into a binary output (positive/negative). Here, we demonstrate that the large volume of raw data obtained from real-time dPCR instruments can be exploited to perform data-driven multiplexing in a single fluorescent channel using machine learning methods, by virtue of the information in the amplification curve. This new approach, referred to as amplification curve analysis (ACA), was shown using an intercalating dye (EvaGreen), reducing the cost and complexity of the assay and enabling the use of melting curve analysis for validation. As a case study, we multiplexed 3 carbapenem-resistant genes to show the impact of this approach on global challenges such as antimicrobial resistance. In the presence of single targets, we report a classification accuracy of 99.1% (N = 16188), which represents a 19.7% increase compared to multiplexing based on the final fluorescent intensity. Considering all combinations of amplification events (including coamplifications), the accuracy was shown to be 92.9% (N = 10383). To support the analysis, we derived a formula to estimate the occurrence of coamplification in dPCR based on multivariate Poisson statistics and suggest reducing the digital occupancy in the case of multiple targets in the same digital panel. The ACA approach takes a step toward maximizing the capabilities of existing real-time dPCR instruments and chemistries, by extracting more information from data to enable data-driven multiplexing with high accuracy. Furthermore, we expect that combining this method with existing probe-based assays will increase multiplexing capabilities significantly. We envision that once emerging point-of-care technologies can reliably capture real-time data from isothermal chemistries, the ACA method will facilitate the implementation of dPCR outside of the lab.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助从容的悟空采纳,获得10
刚刚
HAMS发布了新的文献求助10
刚刚
oo应助狂野尔烟采纳,获得10
刚刚
niceweiwei完成签到 ,获得积分10
刚刚
脑洞疼应助刻苦的媚颜采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
渔渔完成签到 ,获得积分10
2秒前
烽火残心完成签到,获得积分10
2秒前
2秒前
顾年完成签到,获得积分10
2秒前
浅尝离白完成签到,获得积分0
3秒前
ddboys1009完成签到,获得积分10
3秒前
3秒前
YunE完成签到,获得积分10
3秒前
4秒前
慕青应助谭慧采纳,获得10
4秒前
4秒前
sky完成签到,获得积分10
4秒前
美好斓发布了新的文献求助10
4秒前
顺顺利利完成签到,获得积分10
4秒前
Dding发布了新的文献求助10
5秒前
5秒前
昏睡的妙梦完成签到,获得积分10
5秒前
笑点低向雁完成签到,获得积分10
5秒前
自愈合完成签到,获得积分10
6秒前
Ellery完成签到,获得积分10
6秒前
顾矜应助sxpab采纳,获得10
6秒前
6秒前
7秒前
无奈的小虾米完成签到,获得积分10
8秒前
8秒前
画舫发布了新的文献求助10
8秒前
8秒前
glaciersu完成签到,获得积分10
8秒前
Sparks完成签到,获得积分10
8秒前
陈佳琦发布了新的文献求助10
9秒前
wen完成签到,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297