Amplification Curve Analysis: Data-Driven Multiplexing Using Real-Time Digital PCR

数字聚合酶链反应 多路复用 化学 熔化曲线分析 枚举 生物系统 计算机科学 实时聚合酶链反应 数学 聚合酶链反应 基因 生物化学 电信 生物 组合数学
作者
Ahmad Moniri,Luca Miglietta,Kenny Malpartida-Cardenas,Ivana Pennisi,Miguel Cacho-Soblechero,Nicolas Moser,Alison Holmes,Pantelis Georgiou,Jesús Rodríguez-Manzano
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (19): 13134-13143 被引量:44
标识
DOI:10.1021/acs.analchem.0c02253
摘要

Information about the kinetics of PCR reactions is encoded in the amplification curve. However, in digital PCR (dPCR), this information is typically neglected by collapsing each amplification curve into a binary output (positive/negative). Here, we demonstrate that the large volume of raw data obtained from real-time dPCR instruments can be exploited to perform data-driven multiplexing in a single fluorescent channel using machine learning methods, by virtue of the information in the amplification curve. This new approach, referred to as amplification curve analysis (ACA), was shown using an intercalating dye (EvaGreen), reducing the cost and complexity of the assay and enabling the use of melting curve analysis for validation. As a case study, we multiplexed 3 carbapenem-resistant genes to show the impact of this approach on global challenges such as antimicrobial resistance. In the presence of single targets, we report a classification accuracy of 99.1% (N = 16188), which represents a 19.7% increase compared to multiplexing based on the final fluorescent intensity. Considering all combinations of amplification events (including coamplifications), the accuracy was shown to be 92.9% (N = 10383). To support the analysis, we derived a formula to estimate the occurrence of coamplification in dPCR based on multivariate Poisson statistics and suggest reducing the digital occupancy in the case of multiple targets in the same digital panel. The ACA approach takes a step toward maximizing the capabilities of existing real-time dPCR instruments and chemistries, by extracting more information from data to enable data-driven multiplexing with high accuracy. Furthermore, we expect that combining this method with existing probe-based assays will increase multiplexing capabilities significantly. We envision that once emerging point-of-care technologies can reliably capture real-time data from isothermal chemistries, the ACA method will facilitate the implementation of dPCR outside of the lab.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小二郎应助沉静的浩然采纳,获得10
1秒前
淡定小蜜蜂完成签到,获得积分20
2秒前
张乐渝完成签到,获得积分10
3秒前
芽1发布了新的文献求助10
4秒前
4秒前
aYXZ321发布了新的文献求助10
6秒前
我是老大应助淡定小蜜蜂采纳,获得10
6秒前
LILYpig完成签到 ,获得积分10
8秒前
ice完成签到 ,获得积分10
8秒前
年轻的醉冬完成签到 ,获得积分10
9秒前
庾稀完成签到,获得积分20
9秒前
阿肖呀完成签到,获得积分10
9秒前
小熊完成签到,获得积分10
9秒前
晚意完成签到 ,获得积分10
9秒前
Xie发布了新的文献求助10
10秒前
mm完成签到,获得积分10
11秒前
虚拟的觅山完成签到,获得积分10
11秒前
Zx_1993应助认真的不评采纳,获得10
12秒前
12秒前
13秒前
13秒前
典雅又夏完成签到,获得积分10
14秒前
高高从霜完成签到 ,获得积分10
15秒前
17秒前
徐自豪完成签到 ,获得积分10
17秒前
cbq完成签到 ,获得积分10
17秒前
Ava应助孙孙孙啊采纳,获得10
17秒前
18秒前
18秒前
yongjie发布了新的文献求助10
20秒前
20秒前
yyy发布了新的文献求助20
20秒前
21秒前
21秒前
qq完成签到 ,获得积分10
22秒前
Ryan完成签到,获得积分10
22秒前
HELPMEPLZ完成签到,获得积分10
22秒前
田様应助zino采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125