Spatial Correlation of Peak Ground Motions and Pseudo-Spectral Acceleration Based on the Sarpol-e-Zahab Mw 7.3, 2017 Earthquake Data

余震 空间相关性 地质学 地震学 峰值地面加速度 光谱加速度 加速度 航程(航空) 残余物 大地测量学 震中 震级(天文学) 相关函数(量子场论) 地震动 物理 光谱密度 统计 数学 算法 天文 复合材料 经典力学 材料科学
作者
Hamid Zafarani,Seyyed Mohammad Mahdi Ghafoori,M. R. Soghrat,Mahsa Shafiee
出处
期刊:Annals of Geophysics [Instituto Nazionale di Geofisica e Vulcanologia, INGV]
卷期号:63 (4) 被引量:1
标识
DOI:10.4401/ag-8349
摘要

Ground motion intensity measures and structural responses are correlated in nearby sites. The value of this correlation relies on some parameters such as the local geology and distance between the two sites and the natural period of structures, particularly, when lifeline systems or distributed structures are of concern, the issue becomes more important. In this study, the spatial correlation of peak ground acceleration and Spectral Acceleration are evaluated as a function of inter-site separation distance for the Mw7.3 Sarpol-e-Zahab earthquake. On 12 November 2017 a large earthquake occurred near the western border of Iran. The epicenter of the earthquake was reported at 34.77 N and 45.76 E. Here, 192 pairs of horizontal components from the above-mentioned event and 35 of its larger aftershocks with magnitude ranging from Mw 4.0 to 7.3 are employed to evaluate the intra-event residual correlation by considering two Ground Motion Prediction Equations (GMPEs) proposed by Akkar and Bommer [2010] and Zafarani et al. [2017]. A correlation analysis is carried out through semivariogram as a powerful geostatistical tool. As a skeleton for correlation modeling, a kind of exponential model is used. According to the proposed model, the results show that the overall trend of correlation Range depends on spectral period. The results demonstrate that there is strong spatial correlation in the proposed model obtained from the Sarpol-e- Zahab ground motions. The model provided in this study could be employed in earthquake engineering implements such as Shakemaps [Wald et al., 1999] whenever spatial correlation models are required.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yxy完成签到,获得积分10
刚刚
不喝可乐完成签到,获得积分20
1秒前
小问号完成签到,获得积分10
1秒前
2秒前
柳七发布了新的文献求助10
2秒前
迟大猫应助111123123123采纳,获得10
2秒前
香蕉觅云应助子俞采纳,获得10
2秒前
玛卡巴卡完成签到,获得积分10
3秒前
Grayball应助科研小白采纳,获得10
3秒前
阳光完成签到,获得积分10
3秒前
duan完成签到,获得积分10
3秒前
7777777发布了新的文献求助10
3秒前
朴素篮球完成签到,获得积分10
4秒前
清辉月凝完成签到,获得积分10
5秒前
Barry完成签到,获得积分10
5秒前
枫叶完成签到 ,获得积分10
5秒前
英姑应助桶桶要好好学习采纳,获得10
5秒前
6秒前
不辞完成签到,获得积分10
6秒前
ry发布了新的文献求助10
6秒前
song完成签到,获得积分10
6秒前
明亮无颜完成签到,获得积分10
6秒前
7秒前
7秒前
小慈爱鸡完成签到 ,获得积分10
7秒前
7秒前
英俊的铭应助麻麻采纳,获得10
7秒前
97b1完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
羊羊羊发布了新的文献求助30
9秒前
10秒前
10秒前
再沉默完成签到,获得积分10
11秒前
11秒前
11秒前
明亮无颜发布了新的文献求助20
12秒前
12秒前
谁还没有个生活完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678