Early Prediction of the Need for Orthognathic Surgery in Patients With Repaired Unilateral Cleft Lip and Palate Using Machine Learning and Longitudinal Lateral Cephalometric Analysis Data

医学 正颌外科 头影测量 口腔正畸科 骨科手术 颅面 牙科 头影测量分析 矢状面 外科 放射科
作者
Guang Lin,Pil Kim,Seung-Hak Baek,Hong-Gee Kim,Suk Wha Kim,Jee Hyeok Chung
出处
期刊:Journal of Craniofacial Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:32 (2): 616-620 被引量:5
标识
DOI:10.1097/scs.0000000000006943
摘要

The purpose of this study was to determine the cephalometric predictors of the future need for orthognathic surgery in patients with repaired unilateral cleft lip and palate (UCLP) using machine learning. This study included 56 Korean patients with UCLP, who were treated by a single surgeon and a single orthodontist with the same treatment protocol. Lateral cephalograms were obtained before the commencement of orthodontic/orthopedic treatment (T0; mean age, 6.3 years) and at at least of 15 years of age (T1; mean age, 16.7 years). 38 cephalometric variables were measured. At T1 stage, 3 cephalometric criteria (ANB ≤ -3°; Wits appraisal ≤ -5 mm; Harvold unit difference ≥34 mm for surgery group) were used to classify the subjects into the surgery group (n = 10, 17.9%) and non-surgery group (n = 46, 82.1%). Independent t-test was used for statistical analyses. The Boruta method and XGBoost algorithm were used to determine the cephalometric variables for the prediction model. At T0 stage, 2 variables exhibited a significant intergroup difference (ANB and facial convexity angle [FCA], all P < 0.05). However, 18 cephalometric variables at the T1 stage and 14 variables in the amount of change (ΔT1-T0) exhibited significant intergroup differences (all, more significant than P < 0.05). At T0 stage, the ANB, PP-FH, combination factor, and FCA were selected as predictive parameters with a cross-validation accuracy of 87.4%. It was possible to predict the future need for surgery to correct sagittal skeletal discrepancy in UCLP patients at the age of 6 years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助tabor采纳,获得10
刚刚
刚刚
互助互惠互通完成签到,获得积分10
刚刚
脑洞疼应助ziyiziyi采纳,获得10
1秒前
1秒前
1秒前
屹舟完成签到,获得积分10
2秒前
zjudxn关注了科研通微信公众号
2秒前
3秒前
3秒前
科研通AI5应助hu970采纳,获得10
3秒前
3秒前
艺玲发布了新的文献求助10
4秒前
咚咚咚完成签到,获得积分10
4秒前
芋圆Z.完成签到,获得积分10
4秒前
atad2发布了新的文献求助10
4秒前
li梨完成签到,获得积分10
4秒前
5秒前
晏小敏完成签到,获得积分10
5秒前
爆米花应助风中寄云采纳,获得10
6秒前
屹舟发布了新的文献求助10
6秒前
Dou完成签到,获得积分10
6秒前
白泯完成签到,获得积分10
7秒前
1ssd发布了新的文献求助10
7秒前
667发布了新的文献求助10
7秒前
小二郎应助辰柒采纳,获得10
8秒前
9秒前
9秒前
clear完成签到,获得积分20
9秒前
9秒前
orixero应助congguitar采纳,获得10
9秒前
Evan完成签到,获得积分10
9秒前
YANG发布了新的文献求助10
10秒前
10秒前
123发布了新的文献求助10
10秒前
sunzhiyu233发布了新的文献求助10
11秒前
Raul完成签到 ,获得积分10
11秒前
11秒前
伯尔尼圆白菜完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759