Brittle-ductile transition behavior of the polypropylene/ultra-high molecular weight polyethylene/olefin block copolymers ternary blends: Dispersion and interface design

材料科学 艾氏冲击强度试验 复合材料 聚丙烯 聚乙烯 脆性 韧性 共聚物 母粒 流变学 玻璃化转变 聚合物 纳米复合材料 极限抗拉强度
作者
Shida Han,Tianci Zhang,Yuhang Guo,Chunhai Li,Hong Wu,Shaoyun Guo
出处
期刊:Polymer [Elsevier]
卷期号:182: 121819-121819 被引量:24
标识
DOI:10.1016/j.polymer.2019.121819
摘要

Ultra-high molecular weight polyethylene (UHMWPE), which possesses outstanding impact and crack resistance, can be potentially used to toughen polypropylene (PP). Unfortunately, enormous viscosity mismatch between them leads to the formation of large UHMWPE agglomerates and the deterioration of mechanical properties. In this work, a kind of Gel masterbatch mixing (GMM) method and olefin block copolymers (OBC) were used to realize the intimate mixing of PP/UHMWPE and strengthened interface interaction, separately. The results showed that UHMWPE-OBC phases with core-shell structure were formed and dispersed in PP matrix in a submicron size, which OBC was as a compatible shell between UHMWPE core and PP matrix. As the amount of OBC in the PP/UHMWPE/OBC (G-P/U(20)-O) blends increased, the core-shell structure was gradually improved and the brittle-ductile transition occurred when the OBC content reached to 5phr. After adding 7phr OBC and 20phr UHMWPE, the perfect core-shell structure was formed in G-P/U(20)-O(7) blends and the notched Izod impact strength was 55.47 kJ/m2, which was much higher than the 9.86 kJ/m2 (G-P/U(20)) and about 17.5 times larger than Pure PP. Furthermore, crystallization and rheological behaviors were measured to reveal the evolution of core-shell structure and the microstructure-properties relationship was also established to reveal brittle-ductile transition and toughening mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助清爽的亦云采纳,获得10
1秒前
xiaoxiao完成签到,获得积分10
1秒前
Noora发布了新的文献求助30
2秒前
4秒前
7秒前
7秒前
DQ2pi完成签到 ,获得积分10
7秒前
8秒前
9秒前
10秒前
阿尼拉姆发布了新的文献求助10
10秒前
金鱼发布了新的文献求助10
11秒前
anya完成签到,获得积分20
11秒前
研友_nV2ROn完成签到,获得积分10
11秒前
小可发布了新的文献求助10
13秒前
13秒前
搜集达人应助Wang Mu采纳,获得30
13秒前
SC发布了新的文献求助10
14秒前
yeon发布了新的文献求助10
14秒前
111112完成签到,获得积分10
15秒前
Zoeee完成签到,获得积分10
17秒前
anya发布了新的文献求助10
17秒前
甜菜完成签到,获得积分10
19秒前
所所应助yeon采纳,获得10
20秒前
JamesPei应助liuqizong123采纳,获得10
20秒前
21秒前
Noora完成签到,获得积分10
22秒前
陌小石完成签到 ,获得积分10
22秒前
Xxxx完成签到,获得积分10
23秒前
24秒前
26秒前
妖妖灵完成签到,获得积分10
27秒前
27秒前
29秒前
Xxxx发布了新的文献求助10
29秒前
33秒前
大鲁完成签到,获得积分10
34秒前
34秒前
36秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441499
求助须知:如何正确求助?哪些是违规求助? 3038123
关于积分的说明 8970625
捐赠科研通 2726409
什么是DOI,文献DOI怎么找? 1495471
科研通“疑难数据库(出版商)”最低求助积分说明 691208
邀请新用户注册赠送积分活动 688212