代谢物
计算生物学
微生物群
计算机科学
生物
人工智能
生物信息学
生物化学
作者
James T. Morton,Alexander A. Aksenov,Louis‐Félix Nothias,James Foulds,Robert A. Quinn,Michelle Badri,Tami L. Swenson,Marc W. Van Goethem,Trent R. Northen,Yoshiki Vázquez‐Baeza,Mingxun Wang,Nicholas A. Bokulich,Aaron Watters,Se Jin Song,Richard Bonneau,Pieter C. Dorrestein,Rob Knight
出处
期刊:Nature Methods
[Springer Nature]
日期:2019-11-04
卷期号:16 (12): 1306-1314
被引量:217
标识
DOI:10.1038/s41592-019-0616-3
摘要
Integrating multiomics datasets is critical for microbiome research; however, inferring interactions across omics datasets has multiple statistical challenges. We solve this problem by using neural networks ( https://github.com/biocore/mmvec ) to estimate the conditional probability that each molecule is present given the presence of a specific microorganism. We show with known environmental (desert soil biocrust wetting) and clinical (cystic fibrosis lung) examples, our ability to recover microbe–metabolite relationships, and demonstrate how the method can discover relationships between microbially produced metabolites and inflammatory bowel disease. mmvec, a neural-network-based algorithm, uses paired multiomics data (microbial sequence counts and metabolite abundances) to compute the conditional probability of observing a metabolite in the presence of a specific microorganism.
科研通智能强力驱动
Strongly Powered by AbleSci AI