Deep learning for time series classification: a review

系列(地层学) 人工神经网络 模式识别(心理学)
作者
Hassan Ismail Fawaz,Germain Forestier,Jonathan Weber,Lhassane Idoumghar,Pierre-Alain Muller
出处
期刊:arXiv: Learning 被引量:79
标识
DOI:10.1007/s10618-019-00619-1
摘要

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘丽梅完成签到 ,获得积分10
刚刚
阿渺完成签到,获得积分10
1秒前
打打应助lxj5983采纳,获得10
2秒前
2秒前
ding应助Dean采纳,获得10
2秒前
英姑应助林家小弟采纳,获得10
4秒前
4秒前
4秒前
年轻的藏今完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
6秒前
6秒前
前路完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
研友_LOro08发布了新的文献求助30
9秒前
谢会会完成签到 ,获得积分10
10秒前
Summer完成签到,获得积分10
11秒前
11秒前
彭于晏应助kkuang采纳,获得10
11秒前
11秒前
12秒前
12秒前
Lizhenxiang发布了新的文献求助10
12秒前
研友_Z6WNB8发布了新的文献求助10
12秒前
13秒前
ding应助简单的银耳汤采纳,获得10
13秒前
BSDL发布了新的文献求助10
14秒前
15秒前
15秒前
sxyd完成签到,获得积分10
16秒前
涵de暴躁小地雷完成签到,获得积分10
16秒前
Di完成签到 ,获得积分10
17秒前
小点点发布了新的文献求助10
17秒前
研友_Z1WvKL发布了新的文献求助10
17秒前
huoo完成签到 ,获得积分10
18秒前
zhouyi发布了新的文献求助30
18秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302191
求助须知:如何正确求助?哪些是违规求助? 2936670
关于积分的说明 8478573
捐赠科研通 2610467
什么是DOI,文献DOI怎么找? 1425261
科研通“疑难数据库(出版商)”最低求助积分说明 662323
邀请新用户注册赠送积分活动 646517