Deep learning for time series classification: a review

系列(地层学) 人工神经网络 模式识别(心理学)
作者
Hassan Ismail Fawaz,Germain Forestier,Jonathan Weber,Lhassane Idoumghar,Pierre-Alain Muller
出处
期刊:arXiv: Learning 被引量:79
标识
DOI:10.1007/s10618-019-00619-1
摘要

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铱铱的胡萝卜完成签到,获得积分10
刚刚
chem完成签到,获得积分10
1秒前
2秒前
carlitos发布了新的文献求助10
2秒前
凶狠的雁芙完成签到,获得积分10
2秒前
2秒前
2秒前
无极微光应助小熊梅尼耶采纳,获得20
3秒前
3秒前
petrichor完成签到,获得积分10
4秒前
Redamancy完成签到,获得积分20
4秒前
Asuka完成签到 ,获得积分10
5秒前
李健应助韩晨晨采纳,获得20
5秒前
专注白昼完成签到,获得积分10
6秒前
孙军涛发布了新的文献求助10
6秒前
7秒前
秋日繁星发布了新的文献求助10
7秒前
健忘的芷荷完成签到,获得积分10
7秒前
嵇灵竹发布了新的文献求助10
8秒前
天天发布了新的文献求助10
8秒前
ldkshifo完成签到,获得积分10
8秒前
今天摸了吗完成签到,获得积分10
8秒前
科研通AI6应助极客晨风采纳,获得10
10秒前
10秒前
11秒前
11秒前
吱吱吱吱发布了新的文献求助10
12秒前
彭于晏应助爹爹采纳,获得10
13秒前
13秒前
花花花花发布了新的文献求助20
14秒前
hannah发布了新的文献求助10
14秒前
嵇灵竹完成签到,获得积分10
14秒前
RJ123456完成签到,获得积分10
14秒前
15秒前
15秒前
fev123发布了新的文献求助10
16秒前
16秒前
微笑蜗牛完成签到 ,获得积分10
16秒前
salaaa发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249