Deep learning for time series classification: a review

系列(地层学) 人工神经网络 模式识别(心理学)
作者
Hassan Ismail Fawaz,Germain Forestier,Jonathan Weber,Lhassane Idoumghar,Pierre-Alain Muller
出处
期刊:arXiv: Learning 被引量:79
标识
DOI:10.1007/s10618-019-00619-1
摘要

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Mircale采纳,获得10
刚刚
马夋发布了新的文献求助10
1秒前
1秒前
wonderfulhan完成签到,获得积分10
1秒前
1秒前
SYLH应助hhh采纳,获得10
1秒前
1秒前
2秒前
Abner发布了新的文献求助10
3秒前
张张发布了新的文献求助10
4秒前
BareBear应助无聊的不愁采纳,获得10
4秒前
章半仙完成签到,获得积分10
4秒前
Ashley发布了新的文献求助10
5秒前
百香果bxg完成签到 ,获得积分10
5秒前
粱乘风完成签到,获得积分10
5秒前
5秒前
LVVVB完成签到,获得积分10
5秒前
一一发布了新的文献求助10
5秒前
5秒前
sandyhaikeyi完成签到,获得积分10
5秒前
机智雁凡完成签到,获得积分10
6秒前
dengy完成签到,获得积分10
6秒前
七兮完成签到,获得积分10
6秒前
7秒前
8秒前
科研小白完成签到,获得积分10
9秒前
rksm完成签到 ,获得积分10
9秒前
9秒前
Lucas应助聪慧芷巧采纳,获得10
9秒前
9秒前
呼呼完成签到,获得积分10
9秒前
义气的咖啡豆完成签到,获得积分10
9秒前
洞悉完成签到,获得积分10
10秒前
10秒前
脑洞疼应助超帅的鹏飞采纳,获得10
11秒前
马夋完成签到,获得积分10
11秒前
Ashley完成签到,获得积分20
11秒前
大强完成签到,获得积分10
11秒前
海绵饱饱完成签到,获得积分10
11秒前
Serenity发布了新的文献求助10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044