材料科学
纳米发生器
光电子学
压电
能量转换效率
纳米线
基质(水族馆)
箔法
纳米技术
功率密度
复合材料
功率(物理)
海洋学
物理
量子力学
地质学
作者
Muhammad Ali Johar,Aadil Waseem,Mostafa Afifi Hassan,Indrajit V. Bagal,Ameer Abdullah,Jun‐Seok Ha,Sang‐Wan Ryu
标识
DOI:10.1002/aenm.202002608
摘要
Abstract Highly durable piezoelectric nanogenerators (PENGs) with high conversion efficiency and high power density are of great interest. Here, a foldable, scalable, durable, cost‐effective, sensitive, and high current output PENG developed by the direct integration of van der Waals heteroepitaxial growth of GaN nanowires (NWs) by metal‐organic chemical vapor deposition using a graphene coating on a Cu‐foil is reported where the direct growth of GaN on the metallic substrate plays a key role in achieving the high stability of the PENG. The PENG provides a durable and highly sensitive output compared to the previously reported GaN NW‐based PENGs fabricated by transferring NWs onto a foreign substrate. The reported PENG can harvest energy from a variety of ambient actuation sources such as bending, vibrations, air flow, finger pressing, foot striking, fluid flow, and normal force by weights, with the maximum piezoelectric output voltage and current density recorded as 19.7 V and 1.9 mA cm −2 , respectively. Due to its high conversion efficiency, the PENG can power several LEDs and thus can be used to power electronic devices. More importantly, the PENG retains its performance after more than 4 million actuation cycles, demonstrating the potential of the design for practical applications using biomechanical and ambient actuation sources for self‐powered systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI