Remaining useful life prediction based on a multi-sensor data fusion model

预言 传感器融合 数据挖掘 保险丝(电气) 过程(计算) 软传感器 无线传感器网络 工程类 颗粒过滤器 国家(计算机科学) 计算机科学 实时计算 人工智能 卡尔曼滤波器 算法 电气工程 操作系统 计算机网络
作者
Naipeng Li,Nagi Gebraeel,Yaguo Lei,Xiaolei Fang,Xiao Cai,Tao Yan
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:208: 107249-107249 被引量:96
标识
DOI:10.1016/j.ress.2020.107249
摘要

• A RUL prediction method is proposed for systems whose health state is unobservable. • A multi-sensor data fusion model is constructed to describe degradation processes. • A sensor selection algorithm named prioritized sensor group selection is developed. • RUL prediction accuracy is improved by fusing informative sensor signals. With the rapid development of Industrial Internet of Things, more and more sensors have been used for condition monitoring and prognostics of industrial systems. Big data collected from sensor networks bring abundant information resources as well as technical challenges for remaining useful life (RUL) prediction. The major technical challenges include how to select informative sensors and fuse multi-sensor data to improve the prediction performance. To deal with the challenges, this paper proposes a RUL prediction method based on a multi-sensor data fusion model. In this method, the inherent degradation process of the system state is expressed using a state transition function following a Wiener process. Multi-sensor signals are explicated as various proxies of the inherent system degradation process using a multivariate measurement function. The system state is estimated by fusing multi-sensor signals using particle filtering. Informative sensors are selected by a prioritized sensor group selection algorithm. This algorithm first prioritizes sensors according to their individual performances in RUL prediction, and then selects an optimal sensor group based on their combined performances. The effectiveness of the proposed method is demonstrated using a simulation study and aircraft engine degradation data from NASA repository.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淡定的曼易发布了新的文献求助100
1秒前
1秒前
勤奋梨愁发布了新的文献求助10
2秒前
花未眠发布了新的文献求助10
2秒前
深情安青应助hhh采纳,获得10
4秒前
帅气糖豆完成签到 ,获得积分10
6秒前
gsp发布了新的文献求助10
7秒前
qxz发布了新的文献求助10
8秒前
不配.应助梦XING采纳,获得20
8秒前
HEIKU应助andy采纳,获得20
9秒前
老单驳回了赘婿应助
12秒前
14秒前
沉静盼易完成签到,获得积分20
14秒前
15秒前
耍酷的丹珍完成签到,获得积分20
16秒前
竹林小仙女完成签到,获得积分10
16秒前
Pengzhuhuai发布了新的文献求助10
17秒前
院落笙歌完成签到,获得积分10
17秒前
。。。。。。完成签到,获得积分10
19秒前
快乐尔珍完成签到,获得积分10
20秒前
HEIKU应助andy采纳,获得20
21秒前
kk发布了新的文献求助10
21秒前
22秒前
彭于晏应助啾啾咪咪采纳,获得10
23秒前
Ava应助单纯面包采纳,获得10
25秒前
赘婿应助激昂的采波采纳,获得10
25秒前
25秒前
一招将死你完成签到,获得积分10
26秒前
干冷安发布了新的文献求助10
26秒前
张张发布了新的文献求助10
26秒前
多多完成签到,获得积分20
27秒前
jackten完成签到,获得积分10
27秒前
29秒前
合适冬云发布了新的文献求助10
32秒前
32秒前
77完成签到,获得积分20
32秒前
34秒前
35秒前
Sunny给Sunny的求助进行了留言
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136607
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782462
捐赠科研通 2443707
什么是DOI,文献DOI怎么找? 1299370
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954