Remaining useful life prediction based on a multi-sensor data fusion model

预言 传感器融合 数据挖掘 保险丝(电气) 过程(计算) 软传感器 无线传感器网络 工程类 颗粒过滤器 国家(计算机科学) 计算机科学 实时计算 人工智能 卡尔曼滤波器 算法 电气工程 操作系统 计算机网络
作者
Naipeng Li,Nagi Gebraeel,Yaguo Lei,Xiaolei Fang,Xiao Cai,Tao Yan
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:208: 107249-107249 被引量:96
标识
DOI:10.1016/j.ress.2020.107249
摘要

• A RUL prediction method is proposed for systems whose health state is unobservable. • A multi-sensor data fusion model is constructed to describe degradation processes. • A sensor selection algorithm named prioritized sensor group selection is developed. • RUL prediction accuracy is improved by fusing informative sensor signals. With the rapid development of Industrial Internet of Things, more and more sensors have been used for condition monitoring and prognostics of industrial systems. Big data collected from sensor networks bring abundant information resources as well as technical challenges for remaining useful life (RUL) prediction. The major technical challenges include how to select informative sensors and fuse multi-sensor data to improve the prediction performance. To deal with the challenges, this paper proposes a RUL prediction method based on a multi-sensor data fusion model. In this method, the inherent degradation process of the system state is expressed using a state transition function following a Wiener process. Multi-sensor signals are explicated as various proxies of the inherent system degradation process using a multivariate measurement function. The system state is estimated by fusing multi-sensor signals using particle filtering. Informative sensors are selected by a prioritized sensor group selection algorithm. This algorithm first prioritizes sensors according to their individual performances in RUL prediction, and then selects an optimal sensor group based on their combined performances. The effectiveness of the proposed method is demonstrated using a simulation study and aircraft engine degradation data from NASA repository.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助関电脑采纳,获得10
刚刚
1秒前
Dickson完成签到 ,获得积分10
1秒前
shizhiying完成签到 ,获得积分10
2秒前
3秒前
BWZ发布了新的文献求助10
3秒前
3秒前
隐形曼青应助糊涂涂子采纳,获得10
4秒前
tyy完成签到,获得积分10
4秒前
谢序泽发布了新的文献求助10
5秒前
大个应助韩凡采纳,获得10
5秒前
gbw123发布了新的文献求助10
5秒前
6秒前
随因关注了科研通微信公众号
7秒前
zzy加油发布了新的文献求助10
7秒前
8秒前
bkagyin应助风趣采白采纳,获得10
8秒前
1101592875发布了新的文献求助10
8秒前
单单来迟完成签到,获得积分10
9秒前
9秒前
你ya完成签到 ,获得积分10
9秒前
9秒前
香蕉觅云应助果实采纳,获得10
10秒前
10秒前
迟到虞姬发布了新的文献求助10
10秒前
上官志鹏完成签到,获得积分20
11秒前
如意一斩完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
dong应助via采纳,获得10
11秒前
12秒前
Ooops完成签到,获得积分10
12秒前
小圈圈梦魇完成签到,获得积分10
13秒前
tt耶完成签到,获得积分10
13秒前
qqqq发布了新的文献求助10
13秒前
tjunqi完成签到,获得积分10
14秒前
上官志鹏发布了新的文献求助10
14秒前
chicy发布了新的文献求助10
14秒前
14秒前
景良完成签到,获得积分10
15秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149