Remaining useful life prediction based on a multi-sensor data fusion model

预言 传感器融合 数据挖掘 保险丝(电气) 过程(计算) 软传感器 无线传感器网络 工程类 颗粒过滤器 国家(计算机科学) 计算机科学 实时计算 人工智能 卡尔曼滤波器 算法 电气工程 操作系统 计算机网络
作者
Naipeng Li,Nagi Gebraeel,Yaguo Lei,Xiaolei Fang,Xiao Cai,Tao Yan
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:208: 107249-107249 被引量:96
标识
DOI:10.1016/j.ress.2020.107249
摘要

• A RUL prediction method is proposed for systems whose health state is unobservable. • A multi-sensor data fusion model is constructed to describe degradation processes. • A sensor selection algorithm named prioritized sensor group selection is developed. • RUL prediction accuracy is improved by fusing informative sensor signals. With the rapid development of Industrial Internet of Things, more and more sensors have been used for condition monitoring and prognostics of industrial systems. Big data collected from sensor networks bring abundant information resources as well as technical challenges for remaining useful life (RUL) prediction. The major technical challenges include how to select informative sensors and fuse multi-sensor data to improve the prediction performance. To deal with the challenges, this paper proposes a RUL prediction method based on a multi-sensor data fusion model. In this method, the inherent degradation process of the system state is expressed using a state transition function following a Wiener process. Multi-sensor signals are explicated as various proxies of the inherent system degradation process using a multivariate measurement function. The system state is estimated by fusing multi-sensor signals using particle filtering. Informative sensors are selected by a prioritized sensor group selection algorithm. This algorithm first prioritizes sensors according to their individual performances in RUL prediction, and then selects an optimal sensor group based on their combined performances. The effectiveness of the proposed method is demonstrated using a simulation study and aircraft engine degradation data from NASA repository.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rosaline完成签到 ,获得积分10
1秒前
明理含芙完成签到 ,获得积分10
1秒前
1秒前
85号星星发布了新的文献求助10
1秒前
搜集达人应助楚子航采纳,获得10
1秒前
2秒前
bingbing发布了新的文献求助30
3秒前
3秒前
4秒前
Aura完成签到,获得积分10
4秒前
负责从丹发布了新的文献求助10
4秒前
lilibetch完成签到,获得积分10
4秒前
zhiyun完成签到,获得积分10
5秒前
乐乐应助诚心的书琴采纳,获得10
5秒前
吃桂花的芒果给吃桂花的芒果的求助进行了留言
5秒前
冯大哥完成签到,获得积分10
5秒前
思源应助筰侑采纳,获得10
5秒前
6秒前
科研通AI2S应助SHIKI采纳,获得10
6秒前
xy发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
Jasper应助明硕阳采纳,获得10
7秒前
7秒前
ljs发布了新的文献求助10
8秒前
Hello应助屈代荷采纳,获得10
8秒前
XXXTTT发布了新的文献求助10
8秒前
8秒前
微微发布了新的文献求助10
9秒前
芬达发布了新的文献求助30
9秒前
9秒前
冬冬林完成签到,获得积分10
9秒前
YYDing完成签到,获得积分20
10秒前
10秒前
JYL完成签到,获得积分10
10秒前
CJZ完成签到,获得积分10
11秒前
11秒前
科研通AI5应助玉珏采纳,获得30
11秒前
乐乐应助hrpppp采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
《2023南京市住宿行业发展报告》 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4874428
求助须知:如何正确求助?哪些是违规求助? 4163645
关于积分的说明 12914653
捐赠科研通 3920756
什么是DOI,文献DOI怎么找? 2152511
邀请新用户注册赠送积分活动 1170753
关于科研通互助平台的介绍 1074679