Remaining useful life prediction based on a multi-sensor data fusion model

预言 传感器融合 数据挖掘 保险丝(电气) 过程(计算) 软传感器 无线传感器网络 工程类 颗粒过滤器 国家(计算机科学) 计算机科学 实时计算 人工智能 卡尔曼滤波器 算法 电气工程 操作系统 计算机网络
作者
Naipeng Li,Nagi Gebraeel,Yaguo Lei,Xiaolei Fang,Xiao Cai,Tao Yan
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:208: 107249-107249 被引量:96
标识
DOI:10.1016/j.ress.2020.107249
摘要

• A RUL prediction method is proposed for systems whose health state is unobservable. • A multi-sensor data fusion model is constructed to describe degradation processes. • A sensor selection algorithm named prioritized sensor group selection is developed. • RUL prediction accuracy is improved by fusing informative sensor signals. With the rapid development of Industrial Internet of Things, more and more sensors have been used for condition monitoring and prognostics of industrial systems. Big data collected from sensor networks bring abundant information resources as well as technical challenges for remaining useful life (RUL) prediction. The major technical challenges include how to select informative sensors and fuse multi-sensor data to improve the prediction performance. To deal with the challenges, this paper proposes a RUL prediction method based on a multi-sensor data fusion model. In this method, the inherent degradation process of the system state is expressed using a state transition function following a Wiener process. Multi-sensor signals are explicated as various proxies of the inherent system degradation process using a multivariate measurement function. The system state is estimated by fusing multi-sensor signals using particle filtering. Informative sensors are selected by a prioritized sensor group selection algorithm. This algorithm first prioritizes sensors according to their individual performances in RUL prediction, and then selects an optimal sensor group based on their combined performances. The effectiveness of the proposed method is demonstrated using a simulation study and aircraft engine degradation data from NASA repository.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
刚刚
嘿嘿嘿完成签到,获得积分10
1秒前
2秒前
5秒前
dd发布了新的文献求助10
5秒前
孙枭雪完成签到,获得积分10
5秒前
爆米花应助咖北采纳,获得10
6秒前
11完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
JamesPei应助Ahan采纳,获得10
8秒前
serenity完成签到 ,获得积分10
10秒前
牛牛完成签到 ,获得积分10
10秒前
何嘉锐完成签到 ,获得积分10
11秒前
qiang发布了新的文献求助10
12秒前
Lucia发布了新的文献求助10
12秒前
大模型应助innocent采纳,获得10
13秒前
KH发布了新的文献求助10
13秒前
Natsu发布了新的文献求助10
13秒前
wonder123发布了新的文献求助10
15秒前
hd完成签到,获得积分10
15秒前
LISU完成签到,获得积分10
15秒前
16秒前
共享精神应助xxm采纳,获得10
16秒前
上官若男应助dd采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
19秒前
wonder123完成签到,获得积分10
20秒前
Genius发布了新的文献求助10
20秒前
22秒前
23秒前
11发布了新的文献求助10
23秒前
24秒前
醉眠发布了新的文献求助10
25秒前
25秒前
青筠发布了新的文献求助10
25秒前
愿好发布了新的文献求助10
27秒前
摇摆小狗发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425164
求助须知:如何正确求助?哪些是违规求助? 4539269
关于积分的说明 14166518
捐赠科研通 4456411
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435224
关于科研通互助平台的介绍 1412564