已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remaining useful life prediction based on a multi-sensor data fusion model

预言 传感器融合 数据挖掘 保险丝(电气) 过程(计算) 软传感器 无线传感器网络 工程类 颗粒过滤器 国家(计算机科学) 计算机科学 实时计算 人工智能 卡尔曼滤波器 算法 电气工程 操作系统 计算机网络
作者
Naipeng Li,Nagi Gebraeel,Yaguo Lei,Xiaolei Fang,Xiao Cai,Tao Yan
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:208: 107249-107249 被引量:96
标识
DOI:10.1016/j.ress.2020.107249
摘要

• A RUL prediction method is proposed for systems whose health state is unobservable. • A multi-sensor data fusion model is constructed to describe degradation processes. • A sensor selection algorithm named prioritized sensor group selection is developed. • RUL prediction accuracy is improved by fusing informative sensor signals. With the rapid development of Industrial Internet of Things, more and more sensors have been used for condition monitoring and prognostics of industrial systems. Big data collected from sensor networks bring abundant information resources as well as technical challenges for remaining useful life (RUL) prediction. The major technical challenges include how to select informative sensors and fuse multi-sensor data to improve the prediction performance. To deal with the challenges, this paper proposes a RUL prediction method based on a multi-sensor data fusion model. In this method, the inherent degradation process of the system state is expressed using a state transition function following a Wiener process. Multi-sensor signals are explicated as various proxies of the inherent system degradation process using a multivariate measurement function. The system state is estimated by fusing multi-sensor signals using particle filtering. Informative sensors are selected by a prioritized sensor group selection algorithm. This algorithm first prioritizes sensors according to their individual performances in RUL prediction, and then selects an optimal sensor group based on their combined performances. The effectiveness of the proposed method is demonstrated using a simulation study and aircraft engine degradation data from NASA repository.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助个性冰海采纳,获得10
7秒前
9秒前
飘逸的语琴关注了科研通微信公众号
15秒前
15秒前
16秒前
17秒前
17秒前
个性冰海发布了新的文献求助10
21秒前
21秒前
蓝色的鱼发布了新的文献求助10
22秒前
dd发布了新的文献求助10
22秒前
jml完成签到,获得积分10
24秒前
cong完成签到 ,获得积分10
26秒前
虚幻笑晴发布了新的文献求助10
29秒前
LMX完成签到 ,获得积分10
29秒前
个性冰海完成签到,获得积分20
31秒前
01关闭了01文献求助
32秒前
牛初辰完成签到 ,获得积分10
35秒前
37秒前
蓝色的鱼完成签到,获得积分10
38秒前
高高亦竹完成签到,获得积分10
39秒前
43秒前
虚幻笑晴发布了新的文献求助10
44秒前
小雨点Logan完成签到,获得积分10
44秒前
谦让的含海应助dd采纳,获得10
47秒前
哲别发布了新的文献求助10
48秒前
52秒前
默默善愁发布了新的文献求助10
56秒前
顾矜应助默默善愁采纳,获得10
1分钟前
1分钟前
闪闪的梦槐完成签到 ,获得积分10
1分钟前
xiaoya927217发布了新的文献求助10
1分钟前
1分钟前
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
myg123完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458782
求助须知:如何正确求助?哪些是违规求助? 4564757
关于积分的说明 14296896
捐赠科研通 4489835
什么是DOI,文献DOI怎么找? 2459317
邀请新用户注册赠送积分活动 1449038
关于科研通互助平台的介绍 1424524