Remaining useful life prediction based on a multi-sensor data fusion model

预言 传感器融合 数据挖掘 保险丝(电气) 过程(计算) 软传感器 无线传感器网络 工程类 颗粒过滤器 国家(计算机科学) 计算机科学 实时计算 人工智能 卡尔曼滤波器 算法 电气工程 操作系统 计算机网络
作者
Naipeng Li,Nagi Gebraeel,Yaguo Lei,Xiaolei Fang,Xiao Cai,Tao Yan
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:208: 107249-107249 被引量:96
标识
DOI:10.1016/j.ress.2020.107249
摘要

• A RUL prediction method is proposed for systems whose health state is unobservable. • A multi-sensor data fusion model is constructed to describe degradation processes. • A sensor selection algorithm named prioritized sensor group selection is developed. • RUL prediction accuracy is improved by fusing informative sensor signals. With the rapid development of Industrial Internet of Things, more and more sensors have been used for condition monitoring and prognostics of industrial systems. Big data collected from sensor networks bring abundant information resources as well as technical challenges for remaining useful life (RUL) prediction. The major technical challenges include how to select informative sensors and fuse multi-sensor data to improve the prediction performance. To deal with the challenges, this paper proposes a RUL prediction method based on a multi-sensor data fusion model. In this method, the inherent degradation process of the system state is expressed using a state transition function following a Wiener process. Multi-sensor signals are explicated as various proxies of the inherent system degradation process using a multivariate measurement function. The system state is estimated by fusing multi-sensor signals using particle filtering. Informative sensors are selected by a prioritized sensor group selection algorithm. This algorithm first prioritizes sensors according to their individual performances in RUL prediction, and then selects an optimal sensor group based on their combined performances. The effectiveness of the proposed method is demonstrated using a simulation study and aircraft engine degradation data from NASA repository.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好奇宝宝发布了新的文献求助10
刚刚
wanx-发布了新的文献求助80
1秒前
汉堡包应助渊_采纳,获得10
2秒前
2秒前
jianlong0206完成签到 ,获得积分10
2秒前
默默犀牛完成签到 ,获得积分10
2秒前
清爽安青发布了新的文献求助10
2秒前
2秒前
3秒前
南风不竞发布了新的文献求助10
3秒前
JamesPei应助可可豆战士采纳,获得10
4秒前
浮游应助芝士采纳,获得10
4秒前
jiunuan应助芝士采纳,获得10
4秒前
顾矜应助芝士采纳,获得10
4秒前
香蕉觅云应助wzg666采纳,获得10
4秒前
6秒前
脑洞疼应助77qoq采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
wwwwc发布了新的文献求助10
6秒前
xuqiansd发布了新的文献求助10
7秒前
科研通AI6应助棉花糖采纳,获得10
7秒前
8秒前
奇异果发布了新的文献求助10
9秒前
无限符号发布了新的文献求助10
9秒前
Mtoc发布了新的文献求助10
11秒前
11秒前
11秒前
jinze完成签到,获得积分10
11秒前
12秒前
12秒前
菠萝Vicky完成签到,获得积分10
13秒前
黑马王子发布了新的文献求助10
13秒前
13秒前
14秒前
星辰大海应助无心的闭月采纳,获得10
14秒前
艾莉完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
racill发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937