已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remaining useful life prediction based on a multi-sensor data fusion model

预言 传感器融合 数据挖掘 保险丝(电气) 过程(计算) 软传感器 无线传感器网络 工程类 颗粒过滤器 国家(计算机科学) 计算机科学 实时计算 人工智能 卡尔曼滤波器 算法 电气工程 操作系统 计算机网络
作者
Naipeng Li,Nagi Gebraeel,Yaguo Lei,Xiaolei Fang,Xiao Cai,Tao Yan
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:208: 107249-107249 被引量:96
标识
DOI:10.1016/j.ress.2020.107249
摘要

• A RUL prediction method is proposed for systems whose health state is unobservable. • A multi-sensor data fusion model is constructed to describe degradation processes. • A sensor selection algorithm named prioritized sensor group selection is developed. • RUL prediction accuracy is improved by fusing informative sensor signals. With the rapid development of Industrial Internet of Things, more and more sensors have been used for condition monitoring and prognostics of industrial systems. Big data collected from sensor networks bring abundant information resources as well as technical challenges for remaining useful life (RUL) prediction. The major technical challenges include how to select informative sensors and fuse multi-sensor data to improve the prediction performance. To deal with the challenges, this paper proposes a RUL prediction method based on a multi-sensor data fusion model. In this method, the inherent degradation process of the system state is expressed using a state transition function following a Wiener process. Multi-sensor signals are explicated as various proxies of the inherent system degradation process using a multivariate measurement function. The system state is estimated by fusing multi-sensor signals using particle filtering. Informative sensors are selected by a prioritized sensor group selection algorithm. This algorithm first prioritizes sensors according to their individual performances in RUL prediction, and then selects an optimal sensor group based on their combined performances. The effectiveness of the proposed method is demonstrated using a simulation study and aircraft engine degradation data from NASA repository.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
he发布了新的文献求助10
刚刚
CipherSage应助ceeray23采纳,获得20
2秒前
rock完成签到,获得积分20
4秒前
爆米花应助leslie采纳,获得10
4秒前
5秒前
皮飞111发布了新的文献求助30
8秒前
_hhhjhhh完成签到,获得积分10
8秒前
9秒前
rock发布了新的文献求助10
10秒前
Jasper应助sun采纳,获得10
12秒前
14秒前
刘kk完成签到 ,获得积分10
15秒前
午盏发布了新的文献求助10
15秒前
Orange应助范范采纳,获得50
16秒前
上上签完成签到,获得积分20
16秒前
ceeray23发布了新的文献求助20
17秒前
18秒前
18秒前
科研通AI6应助聪明怜阳采纳,获得10
19秒前
ven完成签到,获得积分20
20秒前
Hannah完成签到,获得积分10
21秒前
21秒前
coco234完成签到,获得积分10
22秒前
虚心傲柔发布了新的文献求助10
23秒前
ZXneuro完成签到,获得积分10
23秒前
russing完成签到 ,获得积分10
24秒前
sun发布了新的文献求助10
27秒前
dlfg发布了新的文献求助10
27秒前
27秒前
28秒前
科研通AI6应助ven采纳,获得10
28秒前
29秒前
cwy完成签到,获得积分10
30秒前
桐桐应助on采纳,获得10
30秒前
Sunny完成签到,获得积分10
31秒前
坦率完成签到,获得积分10
32秒前
Camellia发布了新的文献求助10
33秒前
Auriga完成签到,获得积分10
34秒前
勤恳慕灵发布了新的文献求助10
34秒前
哭泣的紫寒关注了科研通微信公众号
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590231
求助须知:如何正确求助?哪些是违规求助? 4674624
关于积分的说明 14794913
捐赠科研通 4630761
什么是DOI,文献DOI怎么找? 2532630
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468576