已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remaining useful life prediction based on a multi-sensor data fusion model

预言 传感器融合 数据挖掘 保险丝(电气) 过程(计算) 软传感器 无线传感器网络 工程类 颗粒过滤器 国家(计算机科学) 计算机科学 实时计算 人工智能 卡尔曼滤波器 算法 电气工程 操作系统 计算机网络
作者
Naipeng Li,Nagi Gebraeel,Yaguo Lei,Xiaolei Fang,Xiao Cai,Tao Yan
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:208: 107249-107249 被引量:96
标识
DOI:10.1016/j.ress.2020.107249
摘要

• A RUL prediction method is proposed for systems whose health state is unobservable. • A multi-sensor data fusion model is constructed to describe degradation processes. • A sensor selection algorithm named prioritized sensor group selection is developed. • RUL prediction accuracy is improved by fusing informative sensor signals. With the rapid development of Industrial Internet of Things, more and more sensors have been used for condition monitoring and prognostics of industrial systems. Big data collected from sensor networks bring abundant information resources as well as technical challenges for remaining useful life (RUL) prediction. The major technical challenges include how to select informative sensors and fuse multi-sensor data to improve the prediction performance. To deal with the challenges, this paper proposes a RUL prediction method based on a multi-sensor data fusion model. In this method, the inherent degradation process of the system state is expressed using a state transition function following a Wiener process. Multi-sensor signals are explicated as various proxies of the inherent system degradation process using a multivariate measurement function. The system state is estimated by fusing multi-sensor signals using particle filtering. Informative sensors are selected by a prioritized sensor group selection algorithm. This algorithm first prioritizes sensors according to their individual performances in RUL prediction, and then selects an optimal sensor group based on their combined performances. The effectiveness of the proposed method is demonstrated using a simulation study and aircraft engine degradation data from NASA repository.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助嗯_好采纳,获得10
刚刚
刚刚
wonder041完成签到,获得积分10
1秒前
勤劳不弱完成签到,获得积分20
3秒前
852应助没有昵称采纳,获得10
3秒前
自由秋完成签到,获得积分10
4秒前
小怪兽完成签到 ,获得积分10
6秒前
星星的愿望完成签到,获得积分10
7秒前
DA完成签到,获得积分10
9秒前
10秒前
大模型应助xiaoying采纳,获得10
12秒前
typpppp发布了新的文献求助10
12秒前
16秒前
牧长一完成签到 ,获得积分0
17秒前
文静的涑发布了新的文献求助10
22秒前
万能图书馆应助treasure采纳,获得10
22秒前
23秒前
Lucas应助aooo采纳,获得10
26秒前
jolin发布了新的文献求助10
27秒前
思源应助没有昵称采纳,获得10
27秒前
研友_VZG7GZ应助szj采纳,获得10
27秒前
脑洞疼应助szj采纳,获得10
27秒前
29秒前
万能图书馆应助nitsuj采纳,获得10
30秒前
30秒前
英姑应助沉默的钵钵鸡采纳,获得10
30秒前
31秒前
Orange应助眼睛大的碧凡采纳,获得10
32秒前
Viviwuyx完成签到,获得积分20
32秒前
33秒前
Ysbatman发布了新的文献求助10
35秒前
李健应助szj采纳,获得10
35秒前
可爱的函函应助szj采纳,获得10
35秒前
乐乐应助szj采纳,获得10
36秒前
Lucas应助szj采纳,获得10
36秒前
36秒前
Hello应助szj采纳,获得10
36秒前
treasure发布了新的文献求助10
36秒前
852应助szj采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422