Recognition of pathogens in food matrixes based on the untargeted in vivo microbial metabolite profiling via a novel SPME/GC × GC-QTOFMS approach

副溶血性弧菌 化学 宋内志贺氏菌 气相色谱-质谱法 沙门氏菌 代谢组学 志贺氏菌 色谱法 致病菌 固相微萃取 细菌 代谢物 大肠杆菌 微生物 气相色谱法 微生物学 代谢组 食品科学 生物 质谱法 生物化学 基因 遗传学
作者
Shun Fang,Shuqin Liu,Juyi Song,Qihong Huang,Zhangmin Xiang
出处
期刊:Food Research International [Elsevier]
卷期号:142: 110213-110213 被引量:22
标识
DOI:10.1016/j.foodres.2021.110213
摘要

Foodborne diseases incurred by pathogenic bacteria are one of the major threats in food safety, and thus it is important to develop facile and effective recognition methodology of pathogens in food. Herein, a new automatic approach for detection of in vivo volatile metabolites emitted from foodborne pathogens was proposed by coupling solid phase microextraction (SPME) technique with a comprehensive two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOFMS). A novel polymer composite based SPME probe which possessed high-coverage of microbial metabolites was utilized in this contribution to realize the sensitive extraction of untargeted metabolites. As a result, a total of 126 in vivo metabolites generated by the investigated pathogens were detected and identified, with 33, 29, 25, 21 and 18 volatile metabolites belonging to Shigella sonnei, Escherichia coli, Salmonella typhimurium, Vibrio parahaemolyticus and Staphylococcus aureus, respectively. Multivariate statistical analyses were applied for further analysis of metabolic data and separation of responsive metabolic features among different microbial systems were found, which were also successfully verified in foodstuffs contaminated by microorganisms. The growth trend of the potential volatile markers of each pathogen in food samples kept consistent with that of the pure strain incubated in medium during the whole incubation time. This study promotes the application of SPME technology in microbial volatile metabolomics and contributes to the development of new approaches for foodborne pathogens recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
干净鬼神发布了新的文献求助10
2秒前
Malmever完成签到,获得积分10
5秒前
李健的粉丝团团长应助lrj采纳,获得10
5秒前
缓慢的蘑菇完成签到 ,获得积分10
8秒前
华仔应助Kamelia采纳,获得10
10秒前
ablesic.rong完成签到,获得积分10
10秒前
去码头整点薯条完成签到,获得积分10
11秒前
深情安青应助雨落采纳,获得10
13秒前
14秒前
15秒前
Orange应助ablesic.rong采纳,获得10
15秒前
Mark完成签到 ,获得积分10
16秒前
17秒前
klyy516发布了新的文献求助10
18秒前
lrj发布了新的文献求助10
19秒前
小葛完成签到,获得积分10
20秒前
斯文慕山发布了新的文献求助30
21秒前
li发布了新的文献求助10
22秒前
zjsu_zpz完成签到,获得积分20
26秒前
29秒前
小小朝完成签到,获得积分10
29秒前
交通小白发布了新的文献求助10
29秒前
小二郎应助十月采纳,获得10
30秒前
科目三应助li采纳,获得10
30秒前
orixero应助lrj采纳,获得10
31秒前
乐乐应助escapeace采纳,获得30
31秒前
32秒前
科研通AI5应助山海采纳,获得10
34秒前
霸气大米完成签到 ,获得积分10
34秒前
34秒前
南楼小阁主完成签到,获得积分10
34秒前
小葛发布了新的文献求助200
36秒前
吃颗糖吧发布了新的文献求助10
36秒前
独行侠完成签到,获得积分10
37秒前
等下一个黎明完成签到,获得积分10
37秒前
37秒前
Charles发布了新的文献求助10
39秒前
39秒前
852应助笑点低的曲奇采纳,获得10
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572296
求助须知:如何正确求助?哪些是违规求助? 3142501
关于积分的说明 9448015
捐赠科研通 2843973
什么是DOI,文献DOI怎么找? 1563103
邀请新用户注册赠送积分活动 731630
科研通“疑难数据库(出版商)”最低求助积分说明 718640