Recognition of pathogens in food matrixes based on the untargeted in vivo microbial metabolite profiling via a novel SPME/GC × GC-QTOFMS approach

副溶血性弧菌 化学 宋内志贺氏菌 气相色谱-质谱法 沙门氏菌 代谢组学 志贺氏菌 色谱法 致病菌 固相微萃取 细菌 代谢物 大肠杆菌 微生物 气相色谱法 微生物学 代谢组 食品科学 生物 质谱法 生物化学 基因 遗传学
作者
Shun Fang,Shuqin Liu,Juyi Song,Qihong Huang,Zhangmin Xiang
出处
期刊:Food Research International [Elsevier]
卷期号:142: 110213-110213 被引量:22
标识
DOI:10.1016/j.foodres.2021.110213
摘要

Foodborne diseases incurred by pathogenic bacteria are one of the major threats in food safety, and thus it is important to develop facile and effective recognition methodology of pathogens in food. Herein, a new automatic approach for detection of in vivo volatile metabolites emitted from foodborne pathogens was proposed by coupling solid phase microextraction (SPME) technique with a comprehensive two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOFMS). A novel polymer composite based SPME probe which possessed high-coverage of microbial metabolites was utilized in this contribution to realize the sensitive extraction of untargeted metabolites. As a result, a total of 126 in vivo metabolites generated by the investigated pathogens were detected and identified, with 33, 29, 25, 21 and 18 volatile metabolites belonging to Shigella sonnei, Escherichia coli, Salmonella typhimurium, Vibrio parahaemolyticus and Staphylococcus aureus, respectively. Multivariate statistical analyses were applied for further analysis of metabolic data and separation of responsive metabolic features among different microbial systems were found, which were also successfully verified in foodstuffs contaminated by microorganisms. The growth trend of the potential volatile markers of each pathogen in food samples kept consistent with that of the pure strain incubated in medium during the whole incubation time. This study promotes the application of SPME technology in microbial volatile metabolomics and contributes to the development of new approaches for foodborne pathogens recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
长情的不言完成签到,获得积分10
1秒前
1秒前
2秒前
Lucas应助呆萌的太阳采纳,获得10
2秒前
doby完成签到,获得积分10
3秒前
3秒前
研友_菲完成签到,获得积分10
3秒前
3秒前
Leach完成签到 ,获得积分10
4秒前
Kalimba完成签到,获得积分10
4秒前
李辉完成签到,获得积分10
4秒前
超帅的访云完成签到,获得积分10
4秒前
会飞的狗托完成签到,获得积分10
6秒前
greenandblue发布了新的文献求助10
6秒前
琛琛多发文章完成签到,获得积分10
6秒前
花椒鱼完成签到 ,获得积分10
7秒前
SciGPT应助水形物语采纳,获得10
8秒前
8秒前
fangzhang发布了新的文献求助10
8秒前
泥過完成签到 ,获得积分10
9秒前
Lucas应助研友_菲采纳,获得10
9秒前
烟花应助Helium采纳,获得30
9秒前
山丘完成签到,获得积分10
9秒前
鱼雷发布了新的文献求助10
11秒前
11秒前
无奈的从云完成签到,获得积分10
11秒前
我是老大应助虚拟的酸奶采纳,获得10
15秒前
打打应助李辉采纳,获得10
17秒前
17秒前
晨曦完成签到,获得积分10
17秒前
18秒前
炙热尔阳完成签到 ,获得积分10
20秒前
Bamboo完成签到 ,获得积分10
20秒前
20秒前
edenz完成签到,获得积分10
21秒前
21秒前
星辰大海应助啊标采纳,获得10
22秒前
研友_VZG7GZ应助剑舞人间采纳,获得30
22秒前
22秒前
高分求助中
Comparative Anatomy of the Vertebrates 9th 3000
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571929
求助须知:如何正确求助?哪些是违规求助? 3142327
关于积分的说明 9446826
捐赠科研通 2843700
什么是DOI,文献DOI怎么找? 1563001
邀请新用户注册赠送积分活动 731530
科研通“疑难数据库(出版商)”最低求助积分说明 718557