Prediction of Permeability Using Random Forest and Genetic Algorithm Model

磁导率 均方误差 随机森林 相关系数 遗传算法 决定系数 计算机科学 算法 土壤科学 数据挖掘 人工智能 数学 统计 机器学习 环境科学 化学 生物化学
作者
JunhuiWang,Wanzi Yan,ZhijunWan,Yi Wang,Jiakun Lv,Aiping Zhou
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Computers, Materials and Continua (Tech Science Press)]
卷期号:125 (3): 1135-1157 被引量:19
标识
DOI:10.32604/cmes.2020.014313
摘要

Precise recovery of Coalbed Methane (CBM) based on transparent reconstruction of geological conditions is a branch of intelligent mining. The process of permeability reconstruction, ranging from data perception to real-time data visualization, is applicable to disaster risk warning and intelligent decision-making on gas drainage. In this study, a machine learning method integrating the Random Forest (RF) and the Genetic Algorithm (GA) was established for permeability prediction in the Xishan Coalfield based on Uniaxial Compressive Strength (UCS), effective stress, temperature and gas pressure. A total of 50 sets of data collected by a self-developed apparatus were used to generate datasets for training and validating models. Statistical measures including the coefficient of determination (R2) and Root Mean Square Error (RMSE) were selected to validate and compare the predictive performances of the single RF model and the hybrid RF– GA model. Furthermore, sensitivity studies were conducted to evaluate the importance of input parameters. The results show that, the proposed RF–GA model is robust in predicting the permeability; UCS is directly correlated to permeability, while all other inputs are inversely related to permeability; the effective stress exerts the greatest impact on permeability based on importance score, followed by the temperature (or gas pressure) and UCS. The partial dependence plots, indicative of marginal utility of each feature in permeability prediction, are in line with experimental results. Thus, the proposed hybrid model (RF–GA) is capable of predicting permeability and thus beneficial to precise CBM recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪小猪发布了新的文献求助30
刚刚
刚刚
乐乐应助夏侯觅风采纳,获得10
刚刚
小马甲应助小红采纳,获得10
刚刚
深情安青应助无题采纳,获得10
刚刚
可爱的函函应助清韵微风采纳,获得10
刚刚
Hello应助Qiao采纳,获得10
1秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
归海逍遥发布了新的文献求助30
4秒前
1412yz发布了新的文献求助10
4秒前
山头虎发布了新的文献求助50
4秒前
顺利安发布了新的文献求助50
5秒前
lucky完成签到,获得积分10
5秒前
杨杨发布了新的文献求助10
5秒前
大个应助静默采纳,获得10
7秒前
8秒前
清秀小霸王完成签到,获得积分10
9秒前
9秒前
归海逍遥完成签到,获得积分10
9秒前
开心半山发布了新的文献求助10
10秒前
科研通AI6应助llll采纳,获得10
10秒前
echo完成签到,获得积分10
11秒前
12秒前
zxzhappy应助1h采纳,获得10
12秒前
右右完成签到,获得积分10
12秒前
Criminology34应助bbdx采纳,获得10
12秒前
13秒前
小红发布了新的文献求助10
14秒前
无题发布了新的文献求助10
14秒前
我爱学习发布了新的文献求助10
15秒前
15秒前
哈哈哈完成签到,获得积分10
16秒前
书呆子叶完成签到,获得积分10
16秒前
17秒前
17秒前
灵巧的初瑶完成签到,获得积分10
18秒前
dd关闭了dd文献求助
18秒前
GQ发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406315
求助须知:如何正确求助?哪些是违规求助? 4524393
关于积分的说明 14097868
捐赠科研通 4438136
什么是DOI,文献DOI怎么找? 2436010
邀请新用户注册赠送积分活动 1428144
关于科研通互助平台的介绍 1406292