Prediction of Permeability Using Random Forest and Genetic Algorithm Model

磁导率 均方误差 随机森林 相关系数 遗传算法 决定系数 计算机科学 算法 土壤科学 数据挖掘 人工智能 数学 统计 机器学习 环境科学 化学 生物化学
作者
JunhuiWang,Wanzi Yan,ZhijunWan,Yi Wang,Jiakun Lv,Aiping Zhou
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Computers, Materials and Continua (Tech Science Press)]
卷期号:125 (3): 1135-1157 被引量:19
标识
DOI:10.32604/cmes.2020.014313
摘要

Precise recovery of Coalbed Methane (CBM) based on transparent reconstruction of geological conditions is a branch of intelligent mining. The process of permeability reconstruction, ranging from data perception to real-time data visualization, is applicable to disaster risk warning and intelligent decision-making on gas drainage. In this study, a machine learning method integrating the Random Forest (RF) and the Genetic Algorithm (GA) was established for permeability prediction in the Xishan Coalfield based on Uniaxial Compressive Strength (UCS), effective stress, temperature and gas pressure. A total of 50 sets of data collected by a self-developed apparatus were used to generate datasets for training and validating models. Statistical measures including the coefficient of determination (R2) and Root Mean Square Error (RMSE) were selected to validate and compare the predictive performances of the single RF model and the hybrid RF– GA model. Furthermore, sensitivity studies were conducted to evaluate the importance of input parameters. The results show that, the proposed RF–GA model is robust in predicting the permeability; UCS is directly correlated to permeability, while all other inputs are inversely related to permeability; the effective stress exerts the greatest impact on permeability based on importance score, followed by the temperature (or gas pressure) and UCS. The partial dependence plots, indicative of marginal utility of each feature in permeability prediction, are in line with experimental results. Thus, the proposed hybrid model (RF–GA) is capable of predicting permeability and thus beneficial to precise CBM recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助ddd采纳,获得10
刚刚
zzz完成签到,获得积分10
刚刚
星星发布了新的文献求助10
刚刚
刚刚
Qian完成签到,获得积分10
刚刚
yyyyyyyyy发布了新的文献求助10
刚刚
1秒前
jinmuna发布了新的文献求助10
1秒前
乐观的煎蛋关注了科研通微信公众号
2秒前
大佛老爷完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助30
2秒前
瘦瘦慕凝完成签到,获得积分10
3秒前
Chenly发布了新的文献求助10
4秒前
4秒前
大尾巴白完成签到,获得积分10
5秒前
风清扬发布了新的文献求助10
5秒前
尹哲发布了新的文献求助10
5秒前
梦丽有人发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
liang完成签到,获得积分10
5秒前
6秒前
6秒前
bkagyin应助huang采纳,获得10
6秒前
臭臭发布了新的文献求助10
7秒前
7秒前
Sindy发布了新的文献求助10
9秒前
9秒前
zzz发布了新的文献求助10
9秒前
10秒前
10秒前
墨白白完成签到,获得积分10
10秒前
hsm发布了新的文献求助10
10秒前
ss完成签到,获得积分10
10秒前
在水一方应助愉快的莹采纳,获得10
11秒前
11秒前
CodeCraft应助沉默是金采纳,获得10
11秒前
11秒前
贪玩的方盒完成签到,获得积分10
11秒前
wangchong完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785