Prediction of Permeability Using Random Forest and Genetic Algorithm Model

磁导率 均方误差 随机森林 相关系数 遗传算法 决定系数 计算机科学 算法 土壤科学 数据挖掘 人工智能 数学 统计 机器学习 环境科学 化学 生物化学
作者
JunhuiWang,Wanzi Yan,ZhijunWan,Yi Wang,Jiakun Lv,Aiping Zhou
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Computers, Materials and Continua (Tech Science Press)]
卷期号:125 (3): 1135-1157 被引量:19
标识
DOI:10.32604/cmes.2020.014313
摘要

Precise recovery of Coalbed Methane (CBM) based on transparent reconstruction of geological conditions is a branch of intelligent mining. The process of permeability reconstruction, ranging from data perception to real-time data visualization, is applicable to disaster risk warning and intelligent decision-making on gas drainage. In this study, a machine learning method integrating the Random Forest (RF) and the Genetic Algorithm (GA) was established for permeability prediction in the Xishan Coalfield based on Uniaxial Compressive Strength (UCS), effective stress, temperature and gas pressure. A total of 50 sets of data collected by a self-developed apparatus were used to generate datasets for training and validating models. Statistical measures including the coefficient of determination (R2) and Root Mean Square Error (RMSE) were selected to validate and compare the predictive performances of the single RF model and the hybrid RF– GA model. Furthermore, sensitivity studies were conducted to evaluate the importance of input parameters. The results show that, the proposed RF–GA model is robust in predicting the permeability; UCS is directly correlated to permeability, while all other inputs are inversely related to permeability; the effective stress exerts the greatest impact on permeability based on importance score, followed by the temperature (or gas pressure) and UCS. The partial dependence plots, indicative of marginal utility of each feature in permeability prediction, are in line with experimental results. Thus, the proposed hybrid model (RF–GA) is capable of predicting permeability and thus beneficial to precise CBM recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yueban发布了新的文献求助10
1秒前
2秒前
领导范儿应助想躺平采纳,获得10
3秒前
搜集达人应助超帅孱采纳,获得10
3秒前
大树梨发布了新的文献求助10
3秒前
Jasper应助彩色的平露采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
Abner完成签到,获得积分10
4秒前
小蘑菇应助张三采纳,获得10
4秒前
5秒前
chang发布了新的文献求助10
5秒前
斯文败类应助Lorry采纳,获得10
6秒前
6秒前
zzz发布了新的文献求助10
6秒前
pinkham_chen完成签到,获得积分10
6秒前
7秒前
友好的绮彤完成签到 ,获得积分10
7秒前
kongzy发布了新的文献求助10
7秒前
9秒前
媛肖发布了新的文献求助20
9秒前
Xcj完成签到,获得积分10
9秒前
10秒前
Owen应助纳川采纳,获得10
11秒前
南晴完成签到 ,获得积分20
11秒前
脑洞疼应助Li采纳,获得10
11秒前
qbxiaojie发布了新的文献求助10
11秒前
12秒前
briefyark完成签到,获得积分10
12秒前
12秒前
柠檬不萌发布了新的文献求助20
13秒前
13秒前
Hello应助Jerry采纳,获得10
13秒前
faustss完成签到,获得积分10
13秒前
li发布了新的文献求助10
13秒前
13秒前
kongzy完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
科目三应助YBR采纳,获得10
15秒前
miumiuka完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095