Prediction of Permeability Using Random Forest and Genetic Algorithm Model

磁导率 均方误差 随机森林 相关系数 遗传算法 决定系数 计算机科学 算法 土壤科学 数据挖掘 人工智能 数学 统计 机器学习 环境科学 化学 生物化学
作者
JunhuiWang,Wanzi Yan,ZhijunWan,Yi Wang,Jiakun Lv,Aiping Zhou
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Computers, Materials and Continua (Tech Science Press)]
卷期号:125 (3): 1135-1157 被引量:19
标识
DOI:10.32604/cmes.2020.014313
摘要

Precise recovery of Coalbed Methane (CBM) based on transparent reconstruction of geological conditions is a branch of intelligent mining. The process of permeability reconstruction, ranging from data perception to real-time data visualization, is applicable to disaster risk warning and intelligent decision-making on gas drainage. In this study, a machine learning method integrating the Random Forest (RF) and the Genetic Algorithm (GA) was established for permeability prediction in the Xishan Coalfield based on Uniaxial Compressive Strength (UCS), effective stress, temperature and gas pressure. A total of 50 sets of data collected by a self-developed apparatus were used to generate datasets for training and validating models. Statistical measures including the coefficient of determination (R2) and Root Mean Square Error (RMSE) were selected to validate and compare the predictive performances of the single RF model and the hybrid RF– GA model. Furthermore, sensitivity studies were conducted to evaluate the importance of input parameters. The results show that, the proposed RF–GA model is robust in predicting the permeability; UCS is directly correlated to permeability, while all other inputs are inversely related to permeability; the effective stress exerts the greatest impact on permeability based on importance score, followed by the temperature (or gas pressure) and UCS. The partial dependence plots, indicative of marginal utility of each feature in permeability prediction, are in line with experimental results. Thus, the proposed hybrid model (RF–GA) is capable of predicting permeability and thus beneficial to precise CBM recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助美好斓采纳,获得10
刚刚
li发布了新的文献求助10
1秒前
科研通AI2S应助Ryoma采纳,获得10
2秒前
323431发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
Hello应助zpc采纳,获得30
3秒前
彭泽阳完成签到,获得积分10
3秒前
123发布了新的文献求助10
4秒前
bkagyin应助lvbowen采纳,获得10
4秒前
ZZX发布了新的文献求助30
5秒前
冲浪男孩226完成签到,获得积分10
6秒前
Rottyyii完成签到,获得积分20
7秒前
慕青应助失眠的流沙采纳,获得10
7秒前
星星完成签到 ,获得积分10
8秒前
褚香旋完成签到,获得积分10
8秒前
8秒前
Lucas应助zt采纳,获得10
10秒前
peng123完成签到,获得积分20
11秒前
11秒前
禹冷玉完成签到,获得积分10
12秒前
zzz发布了新的文献求助10
12秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
euler发布了新的文献求助10
14秒前
XIXIXI发布了新的文献求助10
17秒前
li完成签到,获得积分10
17秒前
小蘑菇应助失眠的流沙采纳,获得10
17秒前
17秒前
peng123发布了新的文献求助10
18秒前
无糖零脂发布了新的文献求助10
18秒前
鹿傥发布了新的文献求助10
19秒前
19秒前
323431完成签到,获得积分10
20秒前
充电宝应助whuhustwit采纳,获得10
20秒前
20秒前
21秒前
22秒前
李伟完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577678
求助须知:如何正确求助?哪些是违规求助? 4662703
关于积分的说明 14743115
捐赠科研通 4603383
什么是DOI,文献DOI怎么找? 2526334
邀请新用户注册赠送积分活动 1496100
关于科研通互助平台的介绍 1465546