Prediction of Permeability Using Random Forest and Genetic Algorithm Model

磁导率 均方误差 随机森林 相关系数 遗传算法 决定系数 计算机科学 算法 土壤科学 数据挖掘 人工智能 数学 统计 机器学习 环境科学 化学 生物化学
作者
JunhuiWang,Wanzi Yan,ZhijunWan,Yi Wang,Jiakun Lv,Aiping Zhou
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Computers, Materials and Continua (Tech Science Press)]
卷期号:125 (3): 1135-1157 被引量:19
标识
DOI:10.32604/cmes.2020.014313
摘要

Precise recovery of Coalbed Methane (CBM) based on transparent reconstruction of geological conditions is a branch of intelligent mining. The process of permeability reconstruction, ranging from data perception to real-time data visualization, is applicable to disaster risk warning and intelligent decision-making on gas drainage. In this study, a machine learning method integrating the Random Forest (RF) and the Genetic Algorithm (GA) was established for permeability prediction in the Xishan Coalfield based on Uniaxial Compressive Strength (UCS), effective stress, temperature and gas pressure. A total of 50 sets of data collected by a self-developed apparatus were used to generate datasets for training and validating models. Statistical measures including the coefficient of determination (R2) and Root Mean Square Error (RMSE) were selected to validate and compare the predictive performances of the single RF model and the hybrid RF– GA model. Furthermore, sensitivity studies were conducted to evaluate the importance of input parameters. The results show that, the proposed RF–GA model is robust in predicting the permeability; UCS is directly correlated to permeability, while all other inputs are inversely related to permeability; the effective stress exerts the greatest impact on permeability based on importance score, followed by the temperature (or gas pressure) and UCS. The partial dependence plots, indicative of marginal utility of each feature in permeability prediction, are in line with experimental results. Thus, the proposed hybrid model (RF–GA) is capable of predicting permeability and thus beneficial to precise CBM recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助耍酷梦菲采纳,获得30
刚刚
刚刚
能干巨人完成签到,获得积分10
刚刚
夕夜完成签到,获得积分10
1秒前
声声慢发布了新的文献求助10
2秒前
3秒前
bkagyin应助Feng5945采纳,获得10
3秒前
浮浮世世发布了新的文献求助80
3秒前
科目三应助liz采纳,获得30
5秒前
量子星尘发布了新的文献求助10
6秒前
鹿小新完成签到 ,获得积分0
7秒前
8秒前
高兴的大米完成签到,获得积分10
8秒前
郭丽莹发布了新的文献求助30
10秒前
12秒前
always发布了新的文献求助30
13秒前
qiuqiu0999完成签到,获得积分10
13秒前
505完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
钮钴禄鬼鬼完成签到 ,获得积分10
16秒前
16秒前
Criminology34应助无语的成仁采纳,获得10
17秒前
Criminology34应助无语的成仁采纳,获得10
17秒前
linn发布了新的文献求助10
17秒前
Feng5945发布了新的文献求助10
18秒前
千羽完成签到,获得积分10
18秒前
三三得九完成签到 ,获得积分10
18秒前
19秒前
科研通AI6.1应助明理听云采纳,获得10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
always完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
汉堡包应助111采纳,获得10
26秒前
27秒前
qiuqiu0999发布了新的文献求助10
28秒前
星辰大海应助随机采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767182
求助须知:如何正确求助?哪些是违规求助? 5568519
关于积分的说明 15414583
捐赠科研通 4901198
什么是DOI,文献DOI怎么找? 2636869
邀请新用户注册赠送积分活动 1585074
关于科研通互助平台的介绍 1540240