Prediction of Permeability Using Random Forest and Genetic Algorithm Model

磁导率 均方误差 随机森林 相关系数 遗传算法 决定系数 计算机科学 算法 土壤科学 数据挖掘 人工智能 数学 统计 机器学习 环境科学 化学 生物化学
作者
JunhuiWang,Wanzi Yan,ZhijunWan,Yi Wang,Jiakun Lv,Aiping Zhou
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Tech Science Press]
卷期号:125 (3): 1135-1157 被引量:19
标识
DOI:10.32604/cmes.2020.014313
摘要

Precise recovery of Coalbed Methane (CBM) based on transparent reconstruction of geological conditions is a branch of intelligent mining. The process of permeability reconstruction, ranging from data perception to real-time data visualization, is applicable to disaster risk warning and intelligent decision-making on gas drainage. In this study, a machine learning method integrating the Random Forest (RF) and the Genetic Algorithm (GA) was established for permeability prediction in the Xishan Coalfield based on Uniaxial Compressive Strength (UCS), effective stress, temperature and gas pressure. A total of 50 sets of data collected by a self-developed apparatus were used to generate datasets for training and validating models. Statistical measures including the coefficient of determination (R2) and Root Mean Square Error (RMSE) were selected to validate and compare the predictive performances of the single RF model and the hybrid RF– GA model. Furthermore, sensitivity studies were conducted to evaluate the importance of input parameters. The results show that, the proposed RF–GA model is robust in predicting the permeability; UCS is directly correlated to permeability, while all other inputs are inversely related to permeability; the effective stress exerts the greatest impact on permeability based on importance score, followed by the temperature (or gas pressure) and UCS. The partial dependence plots, indicative of marginal utility of each feature in permeability prediction, are in line with experimental results. Thus, the proposed hybrid model (RF–GA) is capable of predicting permeability and thus beneficial to precise CBM recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不三不四完成签到,获得积分10
刚刚
欣慰的书本完成签到 ,获得积分10
刚刚
景平完成签到,获得积分10
1秒前
脆脆鲨完成签到,获得积分10
1秒前
Zlinco完成签到,获得积分10
2秒前
Slence完成签到,获得积分10
2秒前
范月月完成签到 ,获得积分10
2秒前
犇骉发布了新的文献求助10
3秒前
沈彬彬完成签到,获得积分10
4秒前
小斌完成签到,获得积分10
4秒前
奋斗弘文发布了新的文献求助10
5秒前
甜甜甜完成签到,获得积分10
5秒前
6秒前
8秒前
LHL完成签到,获得积分10
8秒前
什么东西这么好看完成签到,获得积分10
9秒前
十大完成签到 ,获得积分10
10秒前
研友_LpvQlZ完成签到,获得积分10
10秒前
思源应助nana湘采纳,获得10
10秒前
黄瓜橙橙发布了新的文献求助10
11秒前
专注笑珊完成签到,获得积分10
11秒前
小彭陪小崔读个研完成签到 ,获得积分10
11秒前
Hou完成签到,获得积分10
11秒前
YihanChen完成签到 ,获得积分10
12秒前
12完成签到 ,获得积分10
13秒前
123发布了新的文献求助10
13秒前
jiajia发布了新的文献求助10
14秒前
凡仔完成签到,获得积分10
14秒前
vic完成签到,获得积分10
14秒前
LuoYR@SZU完成签到,获得积分10
15秒前
15秒前
JinGN完成签到,获得积分0
15秒前
大眼睛的草莓完成签到,获得积分10
16秒前
17秒前
17秒前
丑鱼丑鱼我爱你完成签到 ,获得积分10
17秒前
Chloe完成签到,获得积分10
19秒前
19秒前
瑾辰发布了新的文献求助10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027