亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Permeability Using Random Forest and Genetic Algorithm Model

磁导率 均方误差 随机森林 相关系数 遗传算法 决定系数 计算机科学 算法 土壤科学 数据挖掘 人工智能 数学 统计 机器学习 环境科学 化学 生物化学
作者
JunhuiWang,Wanzi Yan,ZhijunWan,Yi Wang,Jiakun Lv,Aiping Zhou
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Tech Science Press]
卷期号:125 (3): 1135-1157 被引量:19
标识
DOI:10.32604/cmes.2020.014313
摘要

Precise recovery of Coalbed Methane (CBM) based on transparent reconstruction of geological conditions is a branch of intelligent mining. The process of permeability reconstruction, ranging from data perception to real-time data visualization, is applicable to disaster risk warning and intelligent decision-making on gas drainage. In this study, a machine learning method integrating the Random Forest (RF) and the Genetic Algorithm (GA) was established for permeability prediction in the Xishan Coalfield based on Uniaxial Compressive Strength (UCS), effective stress, temperature and gas pressure. A total of 50 sets of data collected by a self-developed apparatus were used to generate datasets for training and validating models. Statistical measures including the coefficient of determination (R2) and Root Mean Square Error (RMSE) were selected to validate and compare the predictive performances of the single RF model and the hybrid RF– GA model. Furthermore, sensitivity studies were conducted to evaluate the importance of input parameters. The results show that, the proposed RF–GA model is robust in predicting the permeability; UCS is directly correlated to permeability, while all other inputs are inversely related to permeability; the effective stress exerts the greatest impact on permeability based on importance score, followed by the temperature (or gas pressure) and UCS. The partial dependence plots, indicative of marginal utility of each feature in permeability prediction, are in line with experimental results. Thus, the proposed hybrid model (RF–GA) is capable of predicting permeability and thus beneficial to precise CBM recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
lgq12697应助科研通管家采纳,获得20
27秒前
27秒前
53秒前
沈随便发布了新的文献求助10
58秒前
Yesyes发布了新的文献求助10
1分钟前
NEO完成签到 ,获得积分10
1分钟前
deepast发布了新的文献求助10
1分钟前
初晴完成签到 ,获得积分10
1分钟前
科研通AI6应助丧彪采纳,获得150
1分钟前
1分钟前
希望天下0贩的0应助deepast采纳,获得10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
快乐听南发布了新的文献求助10
1分钟前
1分钟前
HC完成签到,获得积分10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
Yesyes完成签到,获得积分10
1分钟前
Ava应助SDNUDRUG采纳,获得10
1分钟前
yueying完成签到,获得积分10
1分钟前
Augustines完成签到,获得积分10
1分钟前
2分钟前
梦想家完成签到,获得积分10
2分钟前
2分钟前
梦想家发布了新的文献求助10
2分钟前
SDNUDRUG发布了新的文献求助10
2分钟前
2分钟前
lgq12697应助科研通管家采纳,获得10
2分钟前
testmanfuxk完成签到,获得积分10
2分钟前
科研通AI5应助欣喜花生采纳,获得10
3分钟前
3分钟前
Mistletoe完成签到 ,获得积分10
3分钟前
SUnnnnn发布了新的文献求助10
3分钟前
3分钟前
CipherSage应助SUnnnnn采纳,获得10
3分钟前
SUnnnnn完成签到,获得积分20
3分钟前
Sherry完成签到 ,获得积分10
4分钟前
刘坤选发布了新的文献求助10
4分钟前
orixero应助振羽采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581808
求助须知:如何正确求助?哪些是违规求助? 3999641
关于积分的说明 12381493
捐赠科研通 3674380
什么是DOI,文献DOI怎么找? 2024917
邀请新用户注册赠送积分活动 1058802
科研通“疑难数据库(出版商)”最低求助积分说明 945566