HQ-ISNet: High-Quality Instance Segmentation for Remote Sensing Imagery

计算机科学 分割 人工智能 遥感 特征(语言学) 水准点(测量) 计算机视觉 棱锥(几何) 图像分割 模式识别(心理学) 地质学 地理 地图学 光学 物理 哲学 语言学
作者
Hao Su,Shunjun Wei,Shan Liu,Jiadian Liang,Chen Wang,Jun Shi,Xiaoling Zhang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:12 (6): 989-989 被引量:52
标识
DOI:10.3390/rs12060989
摘要

Instance segmentation in high-resolution (HR) remote sensing imagery is one of the most challenging tasks and is more difficult than object detection and semantic segmentation tasks. It aims to predict class labels and pixel-wise instance masks to locate instances in an image. However, there are rare methods currently suitable for instance segmentation in the HR remote sensing images. Meanwhile, it is more difficult to implement instance segmentation due to the complex background of remote sensing images. In this article, a novel instance segmentation approach of HR remote sensing imagery based on Cascade Mask R-CNN is proposed, which is called a high-quality instance segmentation network (HQ-ISNet). In this scheme, the HQ-ISNet exploits a HR feature pyramid network (HRFPN) to fully utilize multi-level feature maps and maintain HR feature maps for remote sensing images’ instance segmentation. Next, to refine mask information flow between mask branches, the instance segmentation network version 2 (ISNetV2) is proposed to promote further improvements in mask prediction accuracy. Then, we construct a new, more challenging dataset based on the synthetic aperture radar (SAR) ship detection dataset (SSDD) and the Northwestern Polytechnical University very-high-resolution 10-class geospatial object detection dataset (NWPU VHR-10) for remote sensing images instance segmentation which can be used as a benchmark for evaluating instance segmentation algorithms in the high-resolution remote sensing images. Finally, extensive experimental analyses and comparisons on the SSDD and the NWPU VHR-10 dataset show that (1) the HRFPN makes the predicted instance masks more accurate, which can effectively enhance the instance segmentation performance of the high-resolution remote sensing imagery; (2) the ISNetV2 is effective and promotes further improvements in mask prediction accuracy; (3) our proposed framework HQ-ISNet is effective and more accurate for instance segmentation in the remote sensing imagery than the existing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默幼南完成签到,获得积分10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
刚刚
CR7应助科研通管家采纳,获得20
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得30
刚刚
AH应助逗小豆采纳,获得10
2秒前
2秒前
夏天再见完成签到,获得积分10
2秒前
3秒前
3秒前
米奇的妙妙屋完成签到,获得积分10
3秒前
常山赵紫龍完成签到,获得积分10
3秒前
科研通AI2S应助蓝胖子采纳,获得10
4秒前
τ涛完成签到,获得积分10
4秒前
theinu完成签到,获得积分10
4秒前
香蕉觅云应助炙热向南采纳,获得10
4秒前
不秋草完成签到 ,获得积分10
4秒前
4秒前
丂枧完成签到 ,获得积分10
4秒前
tanrui完成签到,获得积分10
5秒前
Gentle完成签到,获得积分10
5秒前
巨大的小侠完成签到,获得积分10
5秒前
lsh发布了新的文献求助10
5秒前
5秒前
严锦强完成签到,获得积分10
6秒前
时光友岸完成签到,获得积分10
6秒前
7秒前
今后应助犹豫忆灵采纳,获得10
7秒前
干净寄翠发布了新的文献求助10
7秒前
bkagyin应助不要加糖采纳,获得10
7秒前
Litoivda完成签到 ,获得积分10
7秒前
浪费发布了新的文献求助10
7秒前
cdjq完成签到,获得积分10
7秒前
好多好多鱼应助欢喜念双采纳,获得10
8秒前
8秒前
zombleq完成签到 ,获得积分10
8秒前
某某某完成签到,获得积分10
8秒前
吉吉国王完成签到,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957219
求助须知:如何正确求助?哪些是违规求助? 3503261
关于积分的说明 11112080
捐赠科研通 3234372
什么是DOI,文献DOI怎么找? 1787895
邀请新用户注册赠送积分活动 870817
科研通“疑难数据库(出版商)”最低求助积分说明 802330