亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HQ-ISNet: High-Quality Instance Segmentation for Remote Sensing Imagery

计算机科学 分割 人工智能 遥感 特征(语言学) 水准点(测量) 计算机视觉 棱锥(几何) 图像分割 模式识别(心理学) 地质学 地理 地图学 光学 物理 哲学 语言学
作者
Hao Su,Shunjun Wei,Shan Liu,Jiadian Liang,Chen Wang,Jun Shi,Xiaoling Zhang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:12 (6): 989-989 被引量:52
标识
DOI:10.3390/rs12060989
摘要

Instance segmentation in high-resolution (HR) remote sensing imagery is one of the most challenging tasks and is more difficult than object detection and semantic segmentation tasks. It aims to predict class labels and pixel-wise instance masks to locate instances in an image. However, there are rare methods currently suitable for instance segmentation in the HR remote sensing images. Meanwhile, it is more difficult to implement instance segmentation due to the complex background of remote sensing images. In this article, a novel instance segmentation approach of HR remote sensing imagery based on Cascade Mask R-CNN is proposed, which is called a high-quality instance segmentation network (HQ-ISNet). In this scheme, the HQ-ISNet exploits a HR feature pyramid network (HRFPN) to fully utilize multi-level feature maps and maintain HR feature maps for remote sensing images’ instance segmentation. Next, to refine mask information flow between mask branches, the instance segmentation network version 2 (ISNetV2) is proposed to promote further improvements in mask prediction accuracy. Then, we construct a new, more challenging dataset based on the synthetic aperture radar (SAR) ship detection dataset (SSDD) and the Northwestern Polytechnical University very-high-resolution 10-class geospatial object detection dataset (NWPU VHR-10) for remote sensing images instance segmentation which can be used as a benchmark for evaluating instance segmentation algorithms in the high-resolution remote sensing images. Finally, extensive experimental analyses and comparisons on the SSDD and the NWPU VHR-10 dataset show that (1) the HRFPN makes the predicted instance masks more accurate, which can effectively enhance the instance segmentation performance of the high-resolution remote sensing imagery; (2) the ISNetV2 is effective and promotes further improvements in mask prediction accuracy; (3) our proposed framework HQ-ISNet is effective and more accurate for instance segmentation in the remote sensing imagery than the existing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级灰狼完成签到 ,获得积分10
刚刚
FashionBoy应助WuLJ采纳,获得10
2秒前
deepast完成签到,获得积分10
2秒前
5秒前
7秒前
8秒前
9秒前
10秒前
12秒前
aa发布了新的文献求助10
13秒前
汉堡包应助科研通管家采纳,获得10
15秒前
小邸应助科研通管家采纳,获得10
15秒前
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
15秒前
16秒前
17秒前
18秒前
zhuwg发布了新的文献求助30
18秒前
18秒前
18秒前
19秒前
19秒前
20秒前
21秒前
21秒前
21秒前
21秒前
粥粥发布了新的文献求助10
22秒前
粥粥发布了新的文献求助10
22秒前
粥粥发布了新的文献求助10
22秒前
粥粥发布了新的文献求助10
22秒前
英俊的铭应助蒙豆儿采纳,获得10
22秒前
粥粥发布了新的文献求助10
22秒前
粥粥发布了新的文献求助10
22秒前
粥粥发布了新的文献求助10
23秒前
粥粥发布了新的文献求助10
23秒前
粥粥发布了新的文献求助10
24秒前
粥粥发布了新的文献求助10
25秒前
粥粥发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581650
求助须知:如何正确求助?哪些是违规求助? 3999578
关于积分的说明 12381439
捐赠科研通 3674298
什么是DOI,文献DOI怎么找? 2024891
邀请新用户注册赠送积分活动 1058770
科研通“疑难数据库(出版商)”最低求助积分说明 945556