Regulating the Electronic Structure of CoP Nanosheets by O Incorporation for High‐Efficiency Electrochemical Overall Water Splitting

分解水 双功能 材料科学 杂原子 电化学 电解质 析氧 密度泛函理论 化学工程 纳米技术 催化作用 电极 物理化学 计算化学 化学 生物化学 光催化 工程类 有机化学 戒指(化学)
作者
Guangyao Zhou,Meng Li,Yanle Li,Hang Dong,Dongmei Sun,Xien Liu,Lin Xu,Ziqi Tian,Yawen Tang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:30 (7) 被引量:288
标识
DOI:10.1002/adfm.201905252
摘要

Abstract The exploration of earth‐abundant and high‐efficiency bifunctional electrocatalysts for overall water splitting is of vital importance for the future of the hydrogen economy. Regulation of electronic structure through heteroatom doping represents one of the most powerful strategies to boost the electrocatalytic performance of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, a rational design of O‐incorporated CoP (denoted as O‐CoP) nanosheets, which synergistically integrate the favorable thermodynamics through modification of electronic structures with accelerated kinetics through nanostructuring, is reported. Experimental results and density functional theory simulations manifest that the appropriate O incorporation into CoP can dramatically modulate the electronic structure of CoP and alter the adsorption free energies of reaction intermediates, thus promoting the HER and OER activities. Specifically, the optimized O‐CoP nanosheets exhibit efficient bifunctional performance in alkaline electrolyte, requiring overpotentials of 98 and 310 mV to deliver a current density of 10 mA cm −2 for HER and OER, respectively. When served as bifunctional electrocatalysts for overall water splitting, a low cell voltage of 1.60 V is needed for achieving a current density of 10 mA cm −2 . This proposed anion‐doping strategy will bring new inspiration to boost the electrocatalytic performance of transition metal–based electrocatalysts for energy conversion applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xing完成签到,获得积分10
刚刚
qz完成签到,获得积分10
1秒前
1秒前
灵主发布了新的文献求助10
1秒前
2秒前
陈米线发布了新的文献求助30
2秒前
苏楠发布了新的文献求助10
3秒前
3秒前
默默的筝完成签到 ,获得积分10
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
duanhuiyuan应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
ceeray23应助科研通管家采纳,获得10
5秒前
duanhuiyuan应助科研通管家采纳,获得10
5秒前
duanhuiyuan应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
李正安应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
6秒前
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得20
6秒前
Hello应助科研通管家采纳,获得10
6秒前
我是老大应助wangjuan采纳,获得10
6秒前
共享精神应助你好采纳,获得10
7秒前
tanwenbin完成签到,获得积分10
7秒前
丢丢发布了新的文献求助10
7秒前
7秒前
靖123456发布了新的文献求助10
9秒前
Owen应助甜蜜元灵采纳,获得10
9秒前
wang完成签到,获得积分10
10秒前
10秒前
cocolu给哭泣丹翠的求助进行了留言
11秒前
冷静乌龟关注了科研通微信公众号
12秒前
隐形曼青应助hhhh采纳,获得10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454862
求助须知:如何正确求助?哪些是违规求助? 3050097
关于积分的说明 9020280
捐赠科研通 2738771
什么是DOI,文献DOI怎么找? 1502291
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693159