UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 特征(语言学) 编码器 卷积神经网络 加速 图像分割 推论 计算机视觉 语言学 操作系统 哲学
作者
Zongwei Zhou,Md Mahfuzur Rahman Siddiquee,Nima Tajbakhsh,Jianming Liang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1856-1867 被引量:3083
标识
DOI:10.1109/tmi.2019.2959609
摘要

The state-of-the-art models for medical image segmentation are variants of U-Net and fully convolutional networks (FCN). Despite their success, these models have two limitations: (1) their optimal depth is apriori unknown, requiring extensive architecture search or inefficient ensemble of models of varying depths; and (2) their skip connections impose an unnecessarily restrictive fusion scheme, forcing aggregation only at the same-scale feature maps of the encoder and decoder sub-networks. To overcome these two limitations, we propose UNet++, a new neural architecture for semantic and instance segmentation, by (1) alleviating the unknown network depth with an efficient ensemble of U-Nets of varying depths, which partially share an encoder and co-learn simultaneously using deep supervision; (2) redesigning skip connections to aggregate features of varying semantic scales at the decoder sub-networks, leading to a highly flexible feature fusion scheme; and (3) devising a pruning scheme to accelerate the inference speed of UNet++. We have evaluated UNet++ using six different medical image segmentation datasets, covering multiple imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and electron microscopy (EM), and demonstrating that (1) UNet++ consistently outperforms the baseline models for the task of semantic segmentation across different datasets and backbone architectures; (2) UNet++ enhances segmentation quality of varying-size objects-an improvement over the fixed-depth U-Net; (3) Mask RCNN++ (Mask R-CNN with UNet++ design) outperforms the original Mask R-CNN for the task of instance segmentation; and (4) pruned UNet++ models achieve significant speedup while showing only modest performance degradation. Our implementation and pre-trained models are available at https://github.com/MrGiovanni/UNetPlusPlus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的井发布了新的文献求助200
刚刚
orixero应助lanchong采纳,获得10
1秒前
荼蘼如雪发布了新的文献求助10
1秒前
1秒前
曹先生完成签到,获得积分10
2秒前
Felix0917发布了新的文献求助10
2秒前
王乐安完成签到,获得积分10
2秒前
2秒前
asder发布了新的文献求助200
5秒前
yees完成签到,获得积分20
6秒前
太Crazy辣给太Crazy辣的求助进行了留言
6秒前
manto发布了新的文献求助10
6秒前
木子完成签到,获得积分10
6秒前
6秒前
荼蘼如雪完成签到,获得积分10
7秒前
bin完成签到,获得积分10
7秒前
Bio应助22采纳,获得30
7秒前
7秒前
研友_VZG7GZ应助dayuernihao采纳,获得10
8秒前
lxc发布了新的文献求助10
8秒前
Yancy发布了新的文献求助10
9秒前
10秒前
科研通AI6应助yees采纳,获得10
10秒前
无花果应助keeee采纳,获得10
11秒前
12秒前
NexusExplorer应助lydia采纳,获得10
12秒前
Shirley完成签到,获得积分10
13秒前
东方城发布了新的文献求助10
13秒前
13秒前
Leif发布了新的文献求助10
14秒前
15秒前
量子星尘发布了新的文献求助50
15秒前
15秒前
pfshan发布了新的文献求助10
16秒前
桃井尤川完成签到,获得积分10
16秒前
浮游应助Gavin啥也不会采纳,获得10
16秒前
派大星的海洋裤完成签到,获得积分10
16秒前
Yancy完成签到,获得积分20
17秒前
Limity完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109426
求助须知:如何正确求助?哪些是违规求助? 4318139
关于积分的说明 13453709
捐赠科研通 4148066
什么是DOI,文献DOI怎么找? 2273021
邀请新用户注册赠送积分活动 1275171
关于科研通互助平台的介绍 1213331