UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 特征(语言学) 编码器 卷积神经网络 加速 图像分割 推论 计算机视觉 语言学 操作系统 哲学
作者
Zongwei Zhou,Md Mahfuzur Rahman Siddiquee,Nima Tajbakhsh,Jianming Liang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1856-1867 被引量:2862
标识
DOI:10.1109/tmi.2019.2959609
摘要

The state-of-the-art models for medical image segmentation are variants of U-Net and fully convolutional networks (FCN). Despite their success, these models have two limitations: (1) their optimal depth is apriori unknown, requiring extensive architecture search or inefficient ensemble of models of varying depths; and (2) their skip connections impose an unnecessarily restrictive fusion scheme, forcing aggregation only at the same-scale feature maps of the encoder and decoder sub-networks. To overcome these two limitations, we propose UNet++, a new neural architecture for semantic and instance segmentation, by (1) alleviating the unknown network depth with an efficient ensemble of U-Nets of varying depths, which partially share an encoder and co-learn simultaneously using deep supervision; (2) redesigning skip connections to aggregate features of varying semantic scales at the decoder sub-networks, leading to a highly flexible feature fusion scheme; and (3) devising a pruning scheme to accelerate the inference speed of UNet++. We have evaluated UNet++ using six different medical image segmentation datasets, covering multiple imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and electron microscopy (EM), and demonstrating that (1) UNet++ consistently outperforms the baseline models for the task of semantic segmentation across different datasets and backbone architectures; (2) UNet++ enhances segmentation quality of varying-size objects-an improvement over the fixed-depth U-Net; (3) Mask RCNN++ (Mask R-CNN with UNet++ design) outperforms the original Mask R-CNN for the task of instance segmentation; and (4) pruned UNet++ models achieve significant speedup while showing only modest performance degradation. Our implementation and pre-trained models are available at https://github.com/MrGiovanni/UNetPlusPlus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
Lin完成签到,获得积分10
4秒前
5秒前
Owen应助现代雪晴采纳,获得10
6秒前
7秒前
7秒前
swby完成签到,获得积分10
8秒前
田様应助wellme采纳,获得10
9秒前
annali完成签到,获得积分10
9秒前
9秒前
岁月静好发布了新的文献求助10
9秒前
852应助小小阿杰采纳,获得10
10秒前
感动忆霜发布了新的文献求助10
11秒前
木子完成签到,获得积分10
11秒前
11秒前
kekerenren发布了新的文献求助10
11秒前
小蘑菇应助ZhangR采纳,获得10
12秒前
annali发布了新的文献求助10
13秒前
13秒前
13秒前
向前完成签到,获得积分10
13秒前
14秒前
俊鱼完成签到,获得积分10
14秒前
15秒前
smart完成签到,获得积分10
15秒前
16秒前
lhyqqt完成签到,获得积分10
16秒前
在水一方应助能干的吐司采纳,获得10
17秒前
18秒前
现代雪晴发布了新的文献求助10
19秒前
饼干加冰淇淋完成签到,获得积分10
19秒前
lxz发布了新的文献求助10
19秒前
20秒前
IanYoung71发布了新的文献求助10
20秒前
20秒前
沉默凡桃发布了新的文献求助10
21秒前
香蕉觅云应助Riggle G采纳,获得10
21秒前
彭于彦祖应助南瓜气气采纳,获得30
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371