Bearing remaining useful life estimation using an adaptive data-driven model based on health state change point identification and K-means clustering

方位(导航) 计算机科学 单调函数 可靠性(半导体) 数据挖掘 鉴定(生物学) 试验数据 人工智能 可靠性工程 数学 工程类 物理 数学分析 生物 功率(物理) 程序设计语言 量子力学 植物
作者
Jaskaran Singh,Ashish K. Darpe,S. P. Singh
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:31 (8): 085601-085601 被引量:44
标识
DOI:10.1088/1361-6501/ab6671
摘要

Advance prediction about bearing remaining useful life (RUL) is a major activity which aims at scheduling proper future actions to avoid catastrophic events. However, the reliability of bearing life prediction models is subject to processes, such as construction of a robust bearing degradation health index, monotonicity and trendability of health index, uncertainty in construction of a failure threshold etc. Therefore, to achieve reliable bearing RUL estimates, this study proposes a fundamental framework wherein several data driven models are trained adaptively corresponding to the different bearing health states. The core idea is to selectively identify effective bearings from the training set of bearings whose failure patterns match closely with the evolving failure pattern of a bearing under operation. In each bearing, the locations of all health state change points are identified and then the training bearings are clustered into groups having similar failure trajectories using a K-means approach and developed similarity index. The proposed approach utilizes only partial data from the test bearing for RUL prediction and eliminates the need to manually pre-define a failure threshold limit. The prediction estimates are updated with every incoming data point acquired on the test bearing until failure. A cumulative function is proposed to make the trend of the adopted health indicator (HI) into being monotonic and trendable, which is then used as an input to the data driven model. A confidence value (CV) parameter is proposed to map the inputs of the data driven model, such the CV varies in a fixed range. Both simulated data and run-to-failure experimental data (IEEE PHM 2012 bearing data) have been used to demonstrate the effectiveness of the proposed method. The test results from the proposed methodology have been benchmarked with other approaches, further validating its generic character and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Tina泽采纳,获得10
刚刚
烤番薯发布了新的文献求助10
1秒前
1秒前
www完成签到,获得积分10
2秒前
3秒前
Cactus应助研友_Ze2vV8采纳,获得20
5秒前
小白完成签到,获得积分10
5秒前
林祥胜完成签到,获得积分20
5秒前
AAA发布了新的文献求助30
6秒前
SciGPT应助zjq采纳,获得10
6秒前
Llt完成签到,获得积分10
6秒前
Ava应助鱼跃采纳,获得10
7秒前
8秒前
所所应助XIA采纳,获得10
8秒前
8秒前
zou发布了新的文献求助10
9秒前
岁月轮回发布了新的文献求助10
9秒前
科研通AI2S应助Llt采纳,获得10
10秒前
13秒前
14秒前
14秒前
14秒前
15秒前
焦头鹅发布了新的文献求助10
16秒前
Cactus应助研友_Ze2vV8采纳,获得20
16秒前
17秒前
ha发布了新的文献求助10
17秒前
17秒前
SX0000完成签到 ,获得积分10
18秒前
18秒前
XIA发布了新的文献求助10
19秒前
zxc完成签到,获得积分10
21秒前
21秒前
迷城发布了新的文献求助10
21秒前
岁月轮回完成签到,获得积分10
22秒前
溧子呀发布了新的文献求助10
22秒前
23秒前
wen完成签到,获得积分10
23秒前
情怀应助如意的秋白采纳,获得10
23秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756864
求助须知:如何正确求助?哪些是违规求助? 3300242
关于积分的说明 10113026
捐赠科研通 3014778
什么是DOI,文献DOI怎么找? 1655705
邀请新用户注册赠送积分活动 790073
科研通“疑难数据库(出版商)”最低求助积分说明 753552