Identifying environmental exposure profiles associated with timing of menarche: A two-step machine learning approach to examine multiple environmental exposures

初潮 全国健康与营养检查调查 生物标志物 泊松回归 医学 暴露评估 邻苯二甲酸盐 生理学 尿 环境卫生 人口学 内分泌学 生物 人口 化学 有机化学 社会学 生物化学
作者
Sabine Oskar,Mary S. Wolff,Susan L. Teitelbaum,Jeanette A. Stingone
出处
期刊:Environmental Research [Elsevier]
卷期号:195: 110524-110524 被引量:9
标识
DOI:10.1016/j.envres.2020.110524
摘要

Variation in the timing of menarche has been linked with adverse health outcomes in later life. There is evidence that exposure to hormonally active agents (or endocrine disrupting chemicals; EDCs) during childhood may play a role in accelerating or delaying menarche. The goal of this study was to generate hypotheses on the relationship between exposure to multiple EDCs and timing of menarche by applying a two-stage machine learning approach.We used data from the National Health and Nutrition Examination Survey (NHANES) for years 2005-2008. Data were analyzed for 229 female participants 12-16 years of age who had blood and urine biomarker measures of 41 environmental exposures, all with >70% above limit of detection, in seven classes of chemicals. We modeled risk for earlier menarche (<12 years of age vs older) with exposure biomarkers. We applied a two-stage approach consisting of a random forest (RF) to identify important exposure combinations associated with timing of menarche followed by multivariable modified Poisson regression to quantify associations between exposure profiles ("combinations") and timing of menarche.RF identified urinary concentrations of monoethylhexyl phthalate (MEHP) as the most important feature in partitioning girls into homogenous subgroups followed by bisphenol A (BPA) and 2,4-dichlorophenol (2,4-DCP). In this first stage, we identified 11 distinct exposure biomarker profiles, containing five different classes of EDCs associated with earlier menarche. MEHP appeared in all 11 exposure biomarker profiles and phenols appeared in five. Using these profiles in the second-stage of analysis, we found a relationship between lower MEHP and earlier menarche (MEHP ≤ 2.36 ng/mL vs >2.36 ng/mL: adjusted PR = 1.36, 95% CI: 1.02, 1.80). Combinations of lower MEHP with benzophenone-3, 2,4-DCP, and BPA had similar associations with earlier menarche, though slightly weaker in those smaller subgroups. For girls not having lower MEHP, exposure profiles included other biomarkers (BPA, enterodiol, monobenzyl phthalate, triclosan, and 1-hydroxypyrene); these showed largely null associations in the second-stage analysis. Adjustment for covariates did not materially change the estimates or CIs of these models. We observed weak or null effect estimates for some exposure biomarker profiles and relevant profiles consisted of no more than two EDCs, possibly due to small sample sizes in subgroups.A two-stage approach incorporating machine learning was able to identify interpretable combinations of biomarkers in relation to timing of menarche; these should be further explored in prospective studies. Machine learning methods can serve as a valuable tool to identify patterns within data and generate hypotheses that can be investigated within future, targeted analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjh完成签到,获得积分20
1秒前
1秒前
1秒前
XYWang发布了新的文献求助10
2秒前
cckk完成签到,获得积分10
3秒前
eric完成签到 ,获得积分10
3秒前
勤劳思真应助nanfeng采纳,获得10
3秒前
3秒前
wjx完成签到,获得积分10
4秒前
袁青欣完成签到 ,获得积分10
4秒前
二二零一发布了新的文献求助10
4秒前
4秒前
高会和发布了新的文献求助10
4秒前
4秒前
在水一方应助优秀送终采纳,获得10
5秒前
cckk发布了新的文献求助10
5秒前
Hello应助卡卡采纳,获得10
6秒前
啊七飞完成签到,获得积分10
6秒前
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
pcr163应助科研通管家采纳,获得50
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
加油小李完成签到 ,获得积分10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
TAN应助baomingqiu采纳,获得10
8秒前
认真又亦完成签到 ,获得积分10
9秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155593
求助须知:如何正确求助?哪些是违规求助? 2806820
关于积分的说明 7870825
捐赠科研通 2465126
什么是DOI,文献DOI怎么找? 1312144
科研通“疑难数据库(出版商)”最低求助积分说明 629889
版权声明 601892