亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Trust‐aware generative adversarial network with recurrent neural network for recommender systems

计算机科学 推荐系统 判别式 循环神经网络 人工智能 生成语法 机器学习 生成对抗网络 鉴别器 对抗制 人工神经网络 生成模型 深度学习 数据挖掘 情报检索 探测器 电信
作者
Honglong Chen,Shuai Wang,Nan Jiang,Zhe Li,Ning Yan,Leyi Shi
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:36 (2): 778-795 被引量:19
标识
DOI:10.1002/int.22320
摘要

Recently recommender systems become more and more significant in the daily life such as event recommendation, content recommendation and commodity recommendation, and so forth. Although the recommender systems based on the generative adversarial network (GAN) are competent, the user trust information is seldom taken into consideration to improve the recommendation accuracy. In this paper, we propose a Trust-Aware GAN with recurrent neural network (RNN) for RECommender systems named TagRec, which makes use of the user trust information for top-N recommendation. In the framework, the discriminative model is a multilayer perceptron to distinguish whether a sample is from the real data or fake data generated by the generative model. The discriminator helps to guide the training of the generative model to make it fit the data distribution of the user trust information. The generative model is a RNN with long short-term memory cells, aiming to confuse the discriminative model by generating samples as similar as possible to the real data. Through the adversarial training between the discriminative and generative models, the user trust information can be fully used to improve the recommendation performance. We conduct extensive experiments on real-word data sets to validate the effectiveness of the TagRec by comparing it with the benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
14秒前
维颖发布了新的文献求助10
15秒前
科研通AI2S应助魏欣娜采纳,获得10
17秒前
20秒前
22秒前
浮浮世世发布了新的文献求助10
25秒前
26秒前
浮游应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
嘻嘻哈哈应助科研通管家采纳,获得10
29秒前
嘻嘻哈哈应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
Cast_Lappland发布了新的文献求助10
30秒前
36秒前
Cast_Lappland完成签到,获得积分10
36秒前
早川完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
可爱的函函应助早川采纳,获得10
1分钟前
馍夹菜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Vivian发布了新的文献求助30
1分钟前
Fox完成签到,获得积分10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
维颖完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
zhvjdb发布了新的文献求助10
2分钟前
Raju发布了新的文献求助100
2分钟前
英姑应助lpy李采纳,获得10
2分钟前
2分钟前
zhvjdb完成签到,获得积分10
2分钟前
Yuuw发布了新的文献求助10
2分钟前
bastien驳回了xxfsx应助
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430