Trust‐aware generative adversarial network with recurrent neural network for recommender systems

计算机科学 推荐系统 判别式 循环神经网络 人工智能 生成语法 机器学习 生成对抗网络 鉴别器 对抗制 人工神经网络 生成模型 深度学习 数据挖掘 情报检索 探测器 电信
作者
Honglong Chen,Shuai Wang,Nan Jiang,Zhe Li,Ning Yan,Leyi Shi
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:36 (2): 778-795 被引量:19
标识
DOI:10.1002/int.22320
摘要

Recently recommender systems become more and more significant in the daily life such as event recommendation, content recommendation and commodity recommendation, and so forth. Although the recommender systems based on the generative adversarial network (GAN) are competent, the user trust information is seldom taken into consideration to improve the recommendation accuracy. In this paper, we propose a Trust-Aware GAN with recurrent neural network (RNN) for RECommender systems named TagRec, which makes use of the user trust information for top-N recommendation. In the framework, the discriminative model is a multilayer perceptron to distinguish whether a sample is from the real data or fake data generated by the generative model. The discriminator helps to guide the training of the generative model to make it fit the data distribution of the user trust information. The generative model is a RNN with long short-term memory cells, aiming to confuse the discriminative model by generating samples as similar as possible to the real data. Through the adversarial training between the discriminative and generative models, the user trust information can be fully used to improve the recommendation performance. We conduct extensive experiments on real-word data sets to validate the effectiveness of the TagRec by comparing it with the benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
ED应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
谦让含玉发布了新的文献求助20
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得30
刚刚
turquoise应助科研通管家采纳,获得10
刚刚
Jiang应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
dongjy应助科研通管家采纳,获得20
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
SYLH应助科研通管家采纳,获得20
1秒前
1秒前
机灵曼青完成签到 ,获得积分10
1秒前
英姑应助科研通管家采纳,获得30
1秒前
无奈行恶应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
峥2发布了新的文献求助10
1秒前
斯文败类应助科研通管家采纳,获得80
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
英姑应助科研通管家采纳,获得40
1秒前
1秒前
1秒前
思源应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
Rune完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
科研小白完成签到,获得积分10
3秒前
可乐不加冰完成签到,获得积分10
3秒前
青豆完成签到,获得积分20
4秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452