荧光粉
光致发光
材料科学
兴奋剂
发光
发光二极管
光电子学
量子效率
红外线的
尖晶石
吸收(声学)
猝灭(荧光)
分析化学(期刊)
二极管
光学
荧光
化学
物理
复合材料
冶金
色谱法
作者
Enhai Song,Xingxing Jiang,Yayun Zhou,Zheshuai Lin,Shi Ye,Zhiguo Xia,Qinyuan Zhang
标识
DOI:10.1002/adom.201901105
摘要
Abstract Photoluminescence originated from doped activators in the solid state materials usually faces the challenge of concentration quenching, restricting the further increase of photoluminescence intensity. Herein, a new strategy is demonstrated by the heavy doping Mn 2+ into MgAl 2 O 4 , leading to the broad‐band near‐infrared (NIR) emission peaking at ≈825 nm with a full width at half maximum of ≈125 nm, as well as high internal quantum efficiency of ≈53% upon 450 nm laser excitation. Density functional theory calculation and extend X‐ray absorption fine structure provide a understanding of Al 3+ /Mn 2+ disorder and Mn 2+ –Mn 2+ aggregation in spinel Mg 1–x Al 2 O 4 : x Mn 2+ with high Mn 2+ content, which enables the formation of superexchange coupled IV Mn 2+ – VI Mn 2+ pair. The NIR light‐emitting diodes fabricated by the 450 nm blue chip and Mg 0.50 Al 2 O 4 :0.50Mn 2+ phosphor gives a high NIR output power of ≈78.41 mW under a driven current of 120 mA, and night‐vision application as light source in the dark is demonstrated. This work opens new paths for rational design of efficient broad‐band NIR emitting phosphor, and also provides new insights into the Mn 2+ luminescence and the applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI